Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +26 -26
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 259.72 +/- 14.94
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7916911820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79169118b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7916911940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79169119d0>", "_build": "<function ActorCriticPolicy._build at 0x7f7916911a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f7916911af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7916911b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7916911c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7916911ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7916911d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7916911dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7916911e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f791690c9c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674301490695619615, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYoNT1Hn0Q/U9gZvUIgor51kQc972suugAAAAAAAAAAALi7PL13WzyGzaU7lSRNvj7/9jtt2o89AAAAAAAAAADDU1u+Md8QvVz+Pz4PDVi+T/9uPhOraj4AAIA/AACAPw1zmj03Sr0+xUBcvrBwH76/gZS9fcWePAAAAAAAAAAApltJvo4GsryYiLy90+cwvBrwHj7stQo9AACAPwAAgD+awbq8Y0p+P8ncq71/H8i+3QirPP7ZrzwAAAAAAAAAAGYWBjvF/9U87LKRvVNkNb7JwmK922czvQAAAAAAAAAAmsDyPClLRjsH8429vz3/vZzvCr1LeKA8AAAAAAAAAABNFNc9Wug0PxbCg7y7rJC+aEBpPUF8ursAAAAAAAAAAGY5Bj1ltsE+NtWSvQvdcL428028QkzVvQAAAAAAAAAAGn4yvkSItj6Db7k9Sv+AvsExxrq5kEg9AAAAAAAAAABGmxy+/lz8Pj1R2j3Uaqm+wtmHu1ZzC70AAAAAAAAAAE1uHT2PuBE9H/qqvWIQaL7S0XS7ejjFOgAAAAAAAAAAGo7XPQNKID9msYC++4RbviHr17tETxK9AAAAAAAAAADNQSW+kJlSP1atjb3JnpW+A/vfvfXP07wAAAAAAAAAAFrTiz284Gw/Cr0CPaKuq77KuJs9mjCGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlba4xufYb0CUhpRSlIwBbJRNhQGMAXSUR0CRu3BVMmF8dX2UKGgGaAloD0MIM40mFyOycECUhpRSlGgVTS0BaBZHQJG8N9d/rjZ1fZQoaAZoCWgPQwjNWDSd3U1wQJSGlFKUaBVN/gFoFkdAkbx6E384xXV9lChoBmgJaA9DCN0LzArFHXBAlIaUUpRoFU1OAWgWR0CRvn4J/oaDdX2UKGgGaAloD0MI9+l4zMCZckCUhpRSlGgVTZ8BaBZHQJG+e6Zpi7V1fZQoaAZoCWgPQwhXs874PnFwQJSGlFKUaBVNNQFoFkdAkcAgm/nGKnV9lChoBmgJaA9DCIj2sYIfM3JAlIaUUpRoFU1WAWgWR0CRwPbnHNordX2UKGgGaAloD0MIJegv9IjacECUhpRSlGgVTRIBaBZHQJHBK3WnTAp1fZQoaAZoCWgPQwg8odefxF1vQJSGlFKUaBVNGQFoFkdAkcFB2fTTfHV9lChoBmgJaA9DCEUtza0QJmxAlIaUUpRoFU0sAWgWR0CRwebM5fdAdX2UKGgGaAloD0MIpd3oYz6pcECUhpRSlGgVTT4BaBZHQJHClgx8D0V1fZQoaAZoCWgPQwiIMH4a9x5uQJSGlFKUaBVNJwFoFkdAkcMDe9Ba93V9lChoBmgJaA9DCOLMr+bAUXBAlIaUUpRoFU2EAWgWR0CRw6vdM0xedX2UKGgGaAloD0MI740hAPjqcECUhpRSlGgVTTYBaBZHQJHEZYigTRJ1fZQoaAZoCWgPQwgO3ewPFB1wQJSGlFKUaBVNRAFoFkdAkcTU78vVVnV9lChoBmgJaA9DCD24O2v303FAlIaUUpRoFU07AWgWR0CRxSVfeDWcdX2UKGgGaAloD0MIjPLMy+ExbUCUhpRSlGgVTTcBaBZHQJHFzwx33Yd1fZQoaAZoCWgPQwijy5vDda1yQJSGlFKUaBVNnAFoFkdAkcbETQE6k3V9lChoBmgJaA9DCO5D3nL1t0BAlIaUUpRoFUvpaBZHQJHIKrNnoPl1fZQoaAZoCWgPQwhYjpCBPBVFQJSGlFKUaBVL5WgWR0CRyDdLQHAzdX2UKGgGaAloD0MI2LYos8H0bkCUhpRSlGgVTUwBaBZHQJHI3f3vhIh1fZQoaAZoCWgPQwg4ukp314VvQJSGlFKUaBVNTwFoFkdAkcj1QqI8AHV9lChoBmgJaA9DCPCFyVRBQW1AlIaUUpRoFU0iAWgWR0CRyleRxLkCdX2UKGgGaAloD0MI+tFwylywbECUhpRSlGgVTUYBaBZHQJHKeSwGGEh1fZQoaAZoCWgPQwinQdE8AJpxQJSGlFKUaBVNxAFoFkdAkcqQOrhisnV9lChoBmgJaA9DCCr/Wl45sGxAlIaUUpRoFU0GAWgWR0CRywmqYJE6dX2UKGgGaAloD0MIndZtUHuBb0CUhpRSlGgVTSgBaBZHQJHLDp/wy7B1fZQoaAZoCWgPQwhbQdMSKz1HQJSGlFKUaBVL52gWR0CRy2xhlUZOdX2UKGgGaAloD0MILscrEL1ScUCUhpRSlGgVTSYBaBZHQJHMjdi2Dxt1fZQoaAZoCWgPQwjjxFc7ih9KQJSGlFKUaBVL5GgWR0CRzcrcTJyRdX2UKGgGaAloD0MIlPsdikIjcECUhpRSlGgVTXQBaBZHQJHN6TbFjut1fZQoaAZoCWgPQwiBBTBlYNFxQJSGlFKUaBVNKwFoFkdAkc3oP9UCJXV9lChoBmgJaA9DCCqsVFARBXJAlIaUUpRoFU0wAWgWR0CRzlbdrO7hdX2UKGgGaAloD0MIZB9kWXA0cUCUhpRSlGgVTUUBaBZHQJHPyQjlgc91fZQoaAZoCWgPQwhSYWwhiN5xQJSGlFKUaBVNEAFoFkdAkdCVqesgdXV9lChoBmgJaA9DCKrXLQJjIHFAlIaUUpRoFU00AWgWR0CR0ah1Tzd2dX2UKGgGaAloD0MI0CnIz0aRb0CUhpRSlGgVTTIBaBZHQJHSTdAPd2x1fZQoaAZoCWgPQwhlGeJYl4FtQJSGlFKUaBVNPgFoFkdAkdLAlWwNb3V9lChoBmgJaA9DCAN9Ik8Sn3JAlIaUUpRoFU0aAWgWR0CR0u4O+ZgHdX2UKGgGaAloD0MIfERMiaRdb0CUhpRSlGgVTT0BaBZHQJHUHZK3/gl1fZQoaAZoCWgPQwghrTHoxNNyQJSGlFKUaBVNWwFoFkdAkdXIhMajvnV9lChoBmgJaA9DCLrA5bGm9XFAlIaUUpRoFU1VAWgWR0CR1hhvitJWdX2UKGgGaAloD0MId2aC4dxMcUCUhpRSlGgVTTgBaBZHQJHWcP1+RYB1fZQoaAZoCWgPQwgAWB050mttQJSGlFKUaBVNIwFoFkdAkdclZX+2mnV9lChoBmgJaA9DCDqwHCEDjG1AlIaUUpRoFU08AWgWR0CR1+DneSB9dX2UKGgGaAloD0MI2e2zygz7cECUhpRSlGgVTZ0BaBZHQJHYBvjwQUZ1fZQoaAZoCWgPQwgKLlbUYDJtQJSGlFKUaBVNCAFoFkdAkdhGsV+I/XV9lChoBmgJaA9DCKUw73HmF3FAlIaUUpRoFU1IAWgWR0CR2NxagVXWdX2UKGgGaAloD0MI3XpND4rQcUCUhpRSlGgVTToBaBZHQJHtYhKUVzp1fZQoaAZoCWgPQwhEhlW8EZRuQJSGlFKUaBVNNgFoFkdAke8nokiUxHV9lChoBmgJaA9DCGiwqfNoCXBAlIaUUpRoFU00AWgWR0CR76YLb5/LdX2UKGgGaAloD0MIsOQqFr+Gb0CUhpRSlGgVTXUBaBZHQJHw24vvjOt1fZQoaAZoCWgPQwg8TtGR3KdwQJSGlFKUaBVNeQFoFkdAkfKRN7BwdnV9lChoBmgJaA9DCBY1mIbhjG5AlIaUUpRoFU0ZAWgWR0CR8qL1VYITdX2UKGgGaAloD0MIOZz51RwUcECUhpRSlGgVTXUBaBZHQJHz8rJ8v251fZQoaAZoCWgPQwgUzQNYJDFxQJSGlFKUaBVNQwFoFkdAkfPzrJKaonV9lChoBmgJaA9DCM0gPrBjH3JAlIaUUpRoFU0lAWgWR0CR9FqC6H0sdX2UKGgGaAloD0MIuDzWjMwOcECUhpRSlGgVTTwBaBZHQJH0ZBUrCnB1fZQoaAZoCWgPQwgKLev+MbZuQJSGlFKUaBVNEgFoFkdAkfSQCW/rSnV9lChoBmgJaA9DCO19qgqNs3BAlIaUUpRoFU0KAWgWR0CR9JF+d9UkdX2UKGgGaAloD0MIzeodbgfGbUCUhpRSlGgVTToBaBZHQJH1pilSCOF1fZQoaAZoCWgPQwjIzXADfjpxQJSGlFKUaBVNKQFoFkdAkfYXZTQ3P3V9lChoBmgJaA9DCKqZtRSQqmxAlIaUUpRoFU0ZAWgWR0CR9zyLhrFgdX2UKGgGaAloD0MIHch6avV5QUCUhpRSlGgVS9xoFkdAkfdD8pCrtHV9lChoBmgJaA9DCHBBtiwfn3BAlIaUUpRoFU0dAWgWR0CR+NbedkJ8dX2UKGgGaAloD0MIBwq8k49DcECUhpRSlGgVTSwBaBZHQJH635wfhdd1fZQoaAZoCWgPQwhxkuaPaapwQJSGlFKUaBVNCwFoFkdAkftODBdld3V9lChoBmgJaA9DCFn60AV1Rm9AlIaUUpRoFU0fAWgWR0CR/AiSaEzwdX2UKGgGaAloD0MITkUqjK1DYUCUhpRSlGgVTegDaBZHQJH+dr56+nJ1fZQoaAZoCWgPQwjC9/4G7dluQJSGlFKUaBVNLAFoFkdAkf62bgCOm3V9lChoBmgJaA9DCDrpfeMruHJAlIaUUpRoFU1DAWgWR0CR/2Tuv2XcdX2UKGgGaAloD0MIzlDc8aZDbkCUhpRSlGgVTVkBaBZHQJH/zcj7hvR1fZQoaAZoCWgPQwh9WkV/6AJxQJSGlFKUaBVNSAFoFkdAkf/TR6Ww/3V9lChoBmgJaA9DCEpDjUJSTXBAlIaUUpRoFU1bAWgWR0CR/+Ho5ggHdX2UKGgGaAloD0MINBMM55rIcECUhpRSlGgVTTMBaBZHQJIARr+Haex1fZQoaAZoCWgPQwiVgJiECwFxQJSGlFKUaBVNaAFoFkdAkgCXqu8sc3V9lChoBmgJaA9DCBIwury5aHBAlIaUUpRoFU0yAWgWR0CSALF23azvdX2UKGgGaAloD0MI1xcJbXmpckCUhpRSlGgVTRABaBZHQJIA392ovSN1fZQoaAZoCWgPQwhR+kLIeddYQJSGlFKUaBVN6ANoFkdAkgIfK2a2F3V9lChoBmgJaA9DCNZx/FBpzHFAlIaUUpRoFU08AWgWR0CSAhrHU+cIdX2UKGgGaAloD0MIC170FeSjcECUhpRSlGgVTRsBaBZHQJICjh99c8l1fZQoaAZoCWgPQwgLQQ5KmEVLQJSGlFKUaBVL8mgWR0CSA706YE4edX2UKGgGaAloD0MINqs+V9u7cECUhpRSlGgVTRMBaBZHQJIEIjJMg2Z1fZQoaAZoCWgPQwiDhv4JLnZwQJSGlFKUaBVNJgFoFkdAkgRV5nlGPXV9lChoBmgJaA9DCDxrt11o1i9AlIaUUpRoFUvbaBZHQJIE0+hXbM51fZQoaAZoCWgPQwijrUoi+5A6QJSGlFKUaBVL3GgWR0CSBmExZdOZdX2UKGgGaAloD0MIqn8QyVAhckCUhpRSlGgVTQABaBZHQJIGyAf+0gN1fZQoaAZoCWgPQwjDoEyjSWlwQJSGlFKUaBVNDQFoFkdAkgbSPQv6CXV9lChoBmgJaA9DCPSHZp5coHBAlIaUUpRoFU0sAWgWR0CSBxfxc3VDdX2UKGgGaAloD0MI9WbUfFVPcUCUhpRSlGgVTQYBaBZHQJIHWEJ0GNd1fZQoaAZoCWgPQwiw479AUMlxQJSGlFKUaBVNOgFoFkdAkghiBf8dgnV9lChoBmgJaA9DCIC1atdEw3JAlIaUUpRoFU0yAWgWR0CSCUIe5nUUdX2UKGgGaAloD0MIzlDc8WaTcUCUhpRSlGgVTVoBaBZHQJIJYfxMFll1fZQoaAZoCWgPQwi14hsK3+twQJSGlFKUaBVNPAFoFkdAkglepKjBVXV9lChoBmgJaA9DCOWZl8Pu2G1AlIaUUpRoFU0dAWgWR0CSCgyUcGTtdX2UKGgGaAloD0MIXtpwWFo8cECUhpRSlGgVTR4BaBZHQJIKodYGMXJ1fZQoaAZoCWgPQwhIisiwClRtQJSGlFKUaBVNOwFoFkdAkgr36dlNDnV9lChoBmgJaA9DCMpPqn26MG9AlIaUUpRoFUvuaBZHQJILExTKkmB1fZQoaAZoCWgPQwiO6nQg61tCQJSGlFKUaBVL5WgWR0CSC4RBu4wzdX2UKGgGaAloD0MInwWhvI/eb0CUhpRSlGgVTRkBaBZHQJILxNoJzDJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc3847dd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc3847ddc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc3847de50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc3847dee0>", "_build": "<function ActorCriticPolicy._build at 0x7fcc3847df70>", "forward": "<function ActorCriticPolicy.forward at 0x7fcc38481040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcc384810d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc38481160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcc384811f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc38481280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc38481310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc384813a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcc38473c00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674311398826196116, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPzLbsexe49wHEDvJNyjb4iiT29wPabPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrRdDOZGNcUCUhpRSlIwBbJRNBAGMAXSUR0ClgEDf3vhIdX2UKGgGaAloD0MI7Ulgc47BbUCUhpRSlGgVTQMBaBZHQKWA7BxgiNd1fZQoaAZoCWgPQwh8m/7sx9VvQJSGlFKUaBVNAQFoFkdApYSACbMHKXV9lChoBmgJaA9DCKzGEtZGd3NAlIaUUpRoFU0PAWgWR0ClhT7di2DydX2UKGgGaAloD0MIKjv9oO7scUCUhpRSlGgVTRQBaBZHQKWF+kGA09B1fZQoaAZoCWgPQwg+daxSOstxQJSGlFKUaBVNDAFoFkdApYax+6RQrXV9lChoBmgJaA9DCOzctBnn83BAlIaUUpRoFUvyaBZHQKWHVW0Z3s51fZQoaAZoCWgPQwgB/FOqxF5vQJSGlFKUaBVNFgFoFkdApYgUbxVhkXV9lChoBmgJaA9DCJDbL58svG9AlIaUUpRoFU0NAWgWR0CliM3Ytg8bdX2UKGgGaAloD0MIMnTsoBLvckCUhpRSlGgVTQQBaBZHQKWMcqCpWFN1fZQoaAZoCWgPQwgO95FbkxRvQJSGlFKUaBVNBAFoFkdApY0gbZOBUnV9lChoBmgJaA9DCMl1U8qrr3BAlIaUUpRoFU0iAWgWR0Cljec01qFidX2UKGgGaAloD0MIFLAdjJgwckCUhpRSlGgVTREBaBZHQKWOoAFPi1l1fZQoaAZoCWgPQwh8m/7sx8xuQJSGlFKUaBVNDwFoFkdApY9hvaURnXV9lChoBmgJaA9DCKSnyCHipW1AlIaUUpRoFUv/aBZHQKWQDHuqm0p1fZQoaAZoCWgPQwjg1XJnJvBwQJSGlFKUaBVNHgFoFkdApZDRTn7pFHV9lChoBmgJaA9DCC5weayZ7HBAlIaUUpRoFU0HAWgWR0ClkYA9/z8QdX2UKGgGaAloD0MI4syv5oAob0CUhpRSlGgVTREBaBZHQKWVMCkoF3Z1fZQoaAZoCWgPQwgEyNCxw6xxQJSGlFKUaBVL/GgWR0Clld+MQ2/BdX2UKGgGaAloD0MIBOYhUz7mTECUhpRSlGgVS61oFkdApZZP3i704HV9lChoBmgJaA9DCODzwwjhj3JAlIaUUpRoFUv+aBZHQKWXAN6w+t91fZQoaAZoCWgPQwjYuWkzjoRyQJSGlFKUaBVNHgFoFkdApZe7JMg2ZXV9lChoBmgJaA9DCMJtbeH563BAlIaUUpRoFUv4aBZHQKWYYO6unuR1fZQoaAZoCWgPQwjt9IO6yHNyQJSGlFKUaBVNDAFoFkdApZkWfseGPHV9lChoBmgJaA9DCKMiTifZFkxAlIaUUpRoFUvKaBZHQKWZpk078vV1fZQoaAZoCWgPQwifc7frpWJuQJSGlFKUaBVNAAFoFkdApZ1AYBNmDnV9lChoBmgJaA9DCJxR81WyBHNAlIaUUpRoFU0QAWgWR0ClnfirDIikdX2UKGgGaAloD0MIaydKQiLBckCUhpRSlGgVTR4BaBZHQKWexDziCJ51fZQoaAZoCWgPQwgO9FDbBglxQJSGlFKUaBVL8mgWR0Cln2djgAIZdX2UKGgGaAloD0MIlE+PbRlNbUCUhpRSlGgVTQABaBZHQKWgFN8ma6V1fZQoaAZoCWgPQwiXjjnP2ElvQJSGlFKUaBVL/2gWR0CloMGzjWCmdX2UKGgGaAloD0MIZvhPN9D8cUCUhpRSlGgVS/1oFkdApaFoeJYT03V9lChoBmgJaA9DCIAMHTvoEHJAlIaUUpRoFU0OAWgWR0CloiqqOtGNdX2UKGgGaAloD0MIiNo2jAJwbUCUhpRSlGgVTQMBaBZHQKWlxvm5lOJ1fZQoaAZoCWgPQwhWRiOfV8FuQJSGlFKUaBVL/GgWR0Clpm9SEUTMdX2UKGgGaAloD0MIDHkENxJacECUhpRSlGgVTQoBaBZHQKWnIdH2AXl1fZQoaAZoCWgPQwiOO6WDNUhyQJSGlFKUaBVL+GgWR0Clp8sDnvDxdX2UKGgGaAloD0MIn+QOm0jPbUCUhpRSlGgVTQ4BaBZHQKWog7KaG6B1fZQoaAZoCWgPQwgoui78oLpxQJSGlFKUaBVL/GgWR0ClqS2MCLdfdX2UKGgGaAloD0MI2V4Lem9tY0CUhpRSlGgVTegDaBZHQKWv2qRU3n91fZQoaAZoCWgPQwgUlnhAGZ1wQJSGlFKUaBVNGAFoFkdApbCe9QGfPHV9lChoBmgJaA9DCEI+6Nms9m9AlIaUUpRoFU0NAWgWR0ClsVmXXyy2dX2UKGgGaAloD0MIpnwIqkYXckCUhpRSlGgVTQ0BaBZHQKWyFwDNhVl1fZQoaAZoCWgPQwgoucMmsgxyQJSGlFKUaBVNGgFoFkdApbLOuvECNnV9lChoBmgJaA9DCNlbyvmiTXFAlIaUUpRoFU0EAWgWR0Cls39QoCuEdX2UKGgGaAloD0MIL/mf/J3BcECUhpRSlGgVS/1oFkdApbQumce8w3V9lChoBmgJaA9DCNYApaGGEnBAlIaUUpRoFUv8aBZHQKW3xXCj1wp1fZQoaAZoCWgPQwhWKNL9nLRwQJSGlFKUaBVNIQFoFkdApbiKjesPrnV9lChoBmgJaA9DCOMz2T8PxXJAlIaUUpRoFU0RAWgWR0CluVPNu+AVdX2UKGgGaAloD0MI1SDM7V4TcUCUhpRSlGgVS/NoFkdApbn6gkC3gHV9lChoBmgJaA9DCNqtZTLcV3JAlIaUUpRoFUv7aBZHQKW6r+1jRUp1fZQoaAZoCWgPQwh39pUHaRRkQJSGlFKUaBVN6ANoFkdApcGmkxh2GXV9lChoBmgJaA9DCJvo81HGC3JAlIaUUpRoFUv3aBZHQKXCTiADq4Z1fZQoaAZoCWgPQwjmH32T5pVyQJSGlFKUaBVNBwFoFkdApcMNgYxcmnV9lChoBmgJaA9DCH/3jhoTjW5AlIaUUpRoFUv8aBZHQKXDug/1QIl1fZQoaAZoCWgPQwjG+DB7GeVyQJSGlFKUaBVNEgFoFkdApcRyHwgDBHV9lChoBmgJaA9DCDPABdmyVWRAlIaUUpRoFU3oA2gWR0Clyr6K+BYndX2UKGgGaAloD0MIkIR9O4lHXUCUhpRSlGgVTegDaBZHQKXPezBRAKR1fZQoaAZoCWgPQwgGvTeGgGVyQJSGlFKUaBVL6WgWR0Cl0COxrzoVdX2UKGgGaAloD0MIXtbEAp9ScECUhpRSlGgVTTYCaBZHQKXSJ4/u9e11fZQoaAZoCWgPQwhv05/9yMdhQJSGlFKUaBVN6ANoFkdApdkE+JP69HV9lChoBmgJaA9DCKncRC1NG3BAlIaUUpRoFU0rAWgWR0Cl2dfP5YYBdX2UKGgGaAloD0MIjpPCvAdLckCUhpRSlGgVTS4BaBZHQKXaof9P1th1fZQoaAZoCWgPQwiFJR5QNpBvQJSGlFKUaBVNDAFoFkdApdtcXm/34HV9lChoBmgJaA9DCI3xYfbym3FAlIaUUpRoFU04AWgWR0Cl3Di1RceKdX2UKGgGaAloD0MIh8Jn6+AfckCUhpRSlGgVTQcBaBZHQKXf5I9TxXp1fZQoaAZoCWgPQwi7YkZ4u+RwQJSGlFKUaBVNHgFoFkdApeCpIBikPHV9lChoBmgJaA9DCKNWmL7XXXBAlIaUUpRoFU0CAWgWR0Cl4VaQmu1XdX2UKGgGaAloD0MIf9sTJLZncUCUhpRSlGgVTQcBaBZHQKXiDZ6D5CZ1fZQoaAZoCWgPQwjkEkceiENxQJSGlFKUaBVNAwFoFkdApeLA73fygHV9lChoBmgJaA9DCIdT5uYbGnFAlIaUUpRoFU06AWgWR0Cl45rHuJDWdX2UKGgGaAloD0MIa0YGucsKckCUhpRSlGgVTR8BaBZHQKXkWMYMvyt1fZQoaAZoCWgPQwjYmq285IJvQJSGlFKUaBVNAQFoFkdApefxOnEVFnV9lChoBmgJaA9DCNO9TurL2m1AlIaUUpRoFU0PAWgWR0Cl6KXVkMCtdX2UKGgGaAloD0MIPq946hGvcUCUhpRSlGgVS/loFkdApelLjebd8HV9lChoBmgJaA9DCCy5isXvLHFAlIaUUpRoFUv7aBZHQKXp+Bas6q91fZQoaAZoCWgPQwiB7PXuz0pxQJSGlFKUaBVNCgFoFkdApeqjnV5KOHV9lChoBmgJaA9DCB8xem7hW3BAlIaUUpRoFU0aAWgWR0Cl62ocrAgxdX2UKGgGaAloD0MIEF1Q37LrcECUhpRSlGgVS/loFkdApewUyJsO5XV9lChoBmgJaA9DCIuqX+l8Ol5AlIaUUpRoFU3oA2gWR0Cl8j6shgVodX2UKGgGaAloD0MIy/eMROjacECUhpRSlGgVTTMBaBZHQKXzE4VARkF1fZQoaAZoCWgPQwgQJO8cylFyQJSGlFKUaBVNBAFoFkdApfPZ40Mw13V9lChoBmgJaA9DCKvpeqJrm3FAlIaUUpRoFU0mAWgWR0Cl9Jg8r7O3dX2UKGgGaAloD0MIiiKkbuekckCUhpRSlGgVS/RoFkdApfVDYAbQ1XV9lChoBmgJaA9DCFCKVu7FhXJAlIaUUpRoFU0UAWgWR0Cl9gcTi83/dX2UKGgGaAloD0MIUI2XbpKKbUCUhpRSlGgVTQIBaBZHQKX5n01ZTyd1fZQoaAZoCWgPQwhqTfOOU4duQJSGlFKUaBVNCAFoFkdApfpM4//vOXV9lChoBmgJaA9DCHfYRGauwG9AlIaUUpRoFU0AAWgWR0Cl+vQeeWfLdX2UKGgGaAloD0MItoDQeji2cUCUhpRSlGgVS/RoFkdApfucJF9a2XV9lChoBmgJaA9DCLdfPlnxGHBAlIaUUpRoFU0SAWgWR0Cl/FgIyCWedX2UKGgGaAloD0MIE3zT9FlAcUCUhpRSlGgVTQABaBZHQKX9CAc1fmd1fZQoaAZoCWgPQwguHXOeMTFyQJSGlFKUaBVL/GgWR0Cl/bb7j1f3dX2UKGgGaAloD0MIgoyACofWcUCUhpRSlGgVTQkBaBZHQKYBSbiqABl1fZQoaAZoCWgPQwiUFi6rcI1wQJSGlFKUaBVNAAFoFkdApgH8AmzBynV9lChoBmgJaA9DCIkI/yLob29AlIaUUpRoFUv7aBZHQKYCpRtP5591fZQoaAZoCWgPQwjAtKhPcihwQJSGlFKUaBVNAgFoFkdApgN95a/yoXV9lChoBmgJaA9DCIsYdhjTLHBAlIaUUpRoFU0KAWgWR0CmBGMwUQCkdX2UKGgGaAloD0MIach4lEplbUCUhpRSlGgVS/hoFkdApgU/7Lt/nXV9lChoBmgJaA9DCOz2WWVm93FAlIaUUpRoFU0WAWgWR0CmBksw+MZQdX2UKGgGaAloD0MIOZm4VRApcUCUhpRSlGgVTRQBaBZHQKYHU1Bt1p11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5870, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54bf366e337a280ae6e349031e4b2935e10c869c81567fd74bea4bb4fb69f805
|
3 |
+
size 146728
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -42,13 +42,13 @@
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
-
"n_envs":
|
46 |
-
"num_timesteps":
|
47 |
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,34 +57,34 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc3847dd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc3847ddc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc3847de50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc3847dee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcc3847df70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcc38481040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcc384810d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc38481160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcc384811f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc38481280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc38481310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc384813a0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fcc38473c00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1001472,
|
47 |
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1674311398826196116,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPzLbsexe49wHEDvJNyjb4iiT29wPabPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrRdDOZGNcUCUhpRSlIwBbJRNBAGMAXSUR0ClgEDf3vhIdX2UKGgGaAloD0MI7Ulgc47BbUCUhpRSlGgVTQMBaBZHQKWA7BxgiNd1fZQoaAZoCWgPQwh8m/7sx9VvQJSGlFKUaBVNAQFoFkdApYSACbMHKXV9lChoBmgJaA9DCKzGEtZGd3NAlIaUUpRoFU0PAWgWR0ClhT7di2DydX2UKGgGaAloD0MIKjv9oO7scUCUhpRSlGgVTRQBaBZHQKWF+kGA09B1fZQoaAZoCWgPQwg+daxSOstxQJSGlFKUaBVNDAFoFkdApYax+6RQrXV9lChoBmgJaA9DCOzctBnn83BAlIaUUpRoFUvyaBZHQKWHVW0Z3s51fZQoaAZoCWgPQwgB/FOqxF5vQJSGlFKUaBVNFgFoFkdApYgUbxVhkXV9lChoBmgJaA9DCJDbL58svG9AlIaUUpRoFU0NAWgWR0CliM3Ytg8bdX2UKGgGaAloD0MIMnTsoBLvckCUhpRSlGgVTQQBaBZHQKWMcqCpWFN1fZQoaAZoCWgPQwgO95FbkxRvQJSGlFKUaBVNBAFoFkdApY0gbZOBUnV9lChoBmgJaA9DCMl1U8qrr3BAlIaUUpRoFU0iAWgWR0Cljec01qFidX2UKGgGaAloD0MIFLAdjJgwckCUhpRSlGgVTREBaBZHQKWOoAFPi1l1fZQoaAZoCWgPQwh8m/7sx8xuQJSGlFKUaBVNDwFoFkdApY9hvaURnXV9lChoBmgJaA9DCKSnyCHipW1AlIaUUpRoFUv/aBZHQKWQDHuqm0p1fZQoaAZoCWgPQwjg1XJnJvBwQJSGlFKUaBVNHgFoFkdApZDRTn7pFHV9lChoBmgJaA9DCC5weayZ7HBAlIaUUpRoFU0HAWgWR0ClkYA9/z8QdX2UKGgGaAloD0MI4syv5oAob0CUhpRSlGgVTREBaBZHQKWVMCkoF3Z1fZQoaAZoCWgPQwgEyNCxw6xxQJSGlFKUaBVL/GgWR0Clld+MQ2/BdX2UKGgGaAloD0MIBOYhUz7mTECUhpRSlGgVS61oFkdApZZP3i704HV9lChoBmgJaA9DCODzwwjhj3JAlIaUUpRoFUv+aBZHQKWXAN6w+t91fZQoaAZoCWgPQwjYuWkzjoRyQJSGlFKUaBVNHgFoFkdApZe7JMg2ZXV9lChoBmgJaA9DCMJtbeH563BAlIaUUpRoFUv4aBZHQKWYYO6unuR1fZQoaAZoCWgPQwjt9IO6yHNyQJSGlFKUaBVNDAFoFkdApZkWfseGPHV9lChoBmgJaA9DCKMiTifZFkxAlIaUUpRoFUvKaBZHQKWZpk078vV1fZQoaAZoCWgPQwifc7frpWJuQJSGlFKUaBVNAAFoFkdApZ1AYBNmDnV9lChoBmgJaA9DCJxR81WyBHNAlIaUUpRoFU0QAWgWR0ClnfirDIikdX2UKGgGaAloD0MIaydKQiLBckCUhpRSlGgVTR4BaBZHQKWexDziCJ51fZQoaAZoCWgPQwgO9FDbBglxQJSGlFKUaBVL8mgWR0Cln2djgAIZdX2UKGgGaAloD0MIlE+PbRlNbUCUhpRSlGgVTQABaBZHQKWgFN8ma6V1fZQoaAZoCWgPQwiXjjnP2ElvQJSGlFKUaBVL/2gWR0CloMGzjWCmdX2UKGgGaAloD0MIZvhPN9D8cUCUhpRSlGgVS/1oFkdApaFoeJYT03V9lChoBmgJaA9DCIAMHTvoEHJAlIaUUpRoFU0OAWgWR0CloiqqOtGNdX2UKGgGaAloD0MIiNo2jAJwbUCUhpRSlGgVTQMBaBZHQKWlxvm5lOJ1fZQoaAZoCWgPQwhWRiOfV8FuQJSGlFKUaBVL/GgWR0Clpm9SEUTMdX2UKGgGaAloD0MIDHkENxJacECUhpRSlGgVTQoBaBZHQKWnIdH2AXl1fZQoaAZoCWgPQwiOO6WDNUhyQJSGlFKUaBVL+GgWR0Clp8sDnvDxdX2UKGgGaAloD0MIn+QOm0jPbUCUhpRSlGgVTQ4BaBZHQKWog7KaG6B1fZQoaAZoCWgPQwgoui78oLpxQJSGlFKUaBVL/GgWR0ClqS2MCLdfdX2UKGgGaAloD0MI2V4Lem9tY0CUhpRSlGgVTegDaBZHQKWv2qRU3n91fZQoaAZoCWgPQwgUlnhAGZ1wQJSGlFKUaBVNGAFoFkdApbCe9QGfPHV9lChoBmgJaA9DCEI+6Nms9m9AlIaUUpRoFU0NAWgWR0ClsVmXXyy2dX2UKGgGaAloD0MIpnwIqkYXckCUhpRSlGgVTQ0BaBZHQKWyFwDNhVl1fZQoaAZoCWgPQwgoucMmsgxyQJSGlFKUaBVNGgFoFkdApbLOuvECNnV9lChoBmgJaA9DCNlbyvmiTXFAlIaUUpRoFU0EAWgWR0Cls39QoCuEdX2UKGgGaAloD0MIL/mf/J3BcECUhpRSlGgVS/1oFkdApbQumce8w3V9lChoBmgJaA9DCNYApaGGEnBAlIaUUpRoFUv8aBZHQKW3xXCj1wp1fZQoaAZoCWgPQwhWKNL9nLRwQJSGlFKUaBVNIQFoFkdApbiKjesPrnV9lChoBmgJaA9DCOMz2T8PxXJAlIaUUpRoFU0RAWgWR0CluVPNu+AVdX2UKGgGaAloD0MI1SDM7V4TcUCUhpRSlGgVS/NoFkdApbn6gkC3gHV9lChoBmgJaA9DCNqtZTLcV3JAlIaUUpRoFUv7aBZHQKW6r+1jRUp1fZQoaAZoCWgPQwh39pUHaRRkQJSGlFKUaBVN6ANoFkdApcGmkxh2GXV9lChoBmgJaA9DCJvo81HGC3JAlIaUUpRoFUv3aBZHQKXCTiADq4Z1fZQoaAZoCWgPQwjmH32T5pVyQJSGlFKUaBVNBwFoFkdApcMNgYxcmnV9lChoBmgJaA9DCH/3jhoTjW5AlIaUUpRoFUv8aBZHQKXDug/1QIl1fZQoaAZoCWgPQwjG+DB7GeVyQJSGlFKUaBVNEgFoFkdApcRyHwgDBHV9lChoBmgJaA9DCDPABdmyVWRAlIaUUpRoFU3oA2gWR0Clyr6K+BYndX2UKGgGaAloD0MIkIR9O4lHXUCUhpRSlGgVTegDaBZHQKXPezBRAKR1fZQoaAZoCWgPQwgGvTeGgGVyQJSGlFKUaBVL6WgWR0Cl0COxrzoVdX2UKGgGaAloD0MIXtbEAp9ScECUhpRSlGgVTTYCaBZHQKXSJ4/u9e11fZQoaAZoCWgPQwhv05/9yMdhQJSGlFKUaBVN6ANoFkdApdkE+JP69HV9lChoBmgJaA9DCKncRC1NG3BAlIaUUpRoFU0rAWgWR0Cl2dfP5YYBdX2UKGgGaAloD0MIjpPCvAdLckCUhpRSlGgVTS4BaBZHQKXaof9P1th1fZQoaAZoCWgPQwiFJR5QNpBvQJSGlFKUaBVNDAFoFkdApdtcXm/34HV9lChoBmgJaA9DCI3xYfbym3FAlIaUUpRoFU04AWgWR0Cl3Di1RceKdX2UKGgGaAloD0MIh8Jn6+AfckCUhpRSlGgVTQcBaBZHQKXf5I9TxXp1fZQoaAZoCWgPQwi7YkZ4u+RwQJSGlFKUaBVNHgFoFkdApeCpIBikPHV9lChoBmgJaA9DCKNWmL7XXXBAlIaUUpRoFU0CAWgWR0Cl4VaQmu1XdX2UKGgGaAloD0MIf9sTJLZncUCUhpRSlGgVTQcBaBZHQKXiDZ6D5CZ1fZQoaAZoCWgPQwjkEkceiENxQJSGlFKUaBVNAwFoFkdApeLA73fygHV9lChoBmgJaA9DCIdT5uYbGnFAlIaUUpRoFU06AWgWR0Cl45rHuJDWdX2UKGgGaAloD0MIa0YGucsKckCUhpRSlGgVTR8BaBZHQKXkWMYMvyt1fZQoaAZoCWgPQwjYmq285IJvQJSGlFKUaBVNAQFoFkdApefxOnEVFnV9lChoBmgJaA9DCNO9TurL2m1AlIaUUpRoFU0PAWgWR0Cl6KXVkMCtdX2UKGgGaAloD0MIPq946hGvcUCUhpRSlGgVS/loFkdApelLjebd8HV9lChoBmgJaA9DCCy5isXvLHFAlIaUUpRoFUv7aBZHQKXp+Bas6q91fZQoaAZoCWgPQwiB7PXuz0pxQJSGlFKUaBVNCgFoFkdApeqjnV5KOHV9lChoBmgJaA9DCB8xem7hW3BAlIaUUpRoFU0aAWgWR0Cl62ocrAgxdX2UKGgGaAloD0MIEF1Q37LrcECUhpRSlGgVS/loFkdApewUyJsO5XV9lChoBmgJaA9DCIuqX+l8Ol5AlIaUUpRoFU3oA2gWR0Cl8j6shgVodX2UKGgGaAloD0MIy/eMROjacECUhpRSlGgVTTMBaBZHQKXzE4VARkF1fZQoaAZoCWgPQwgQJO8cylFyQJSGlFKUaBVNBAFoFkdApfPZ40Mw13V9lChoBmgJaA9DCKvpeqJrm3FAlIaUUpRoFU0mAWgWR0Cl9Jg8r7O3dX2UKGgGaAloD0MIiiKkbuekckCUhpRSlGgVS/RoFkdApfVDYAbQ1XV9lChoBmgJaA9DCFCKVu7FhXJAlIaUUpRoFU0UAWgWR0Cl9gcTi83/dX2UKGgGaAloD0MIUI2XbpKKbUCUhpRSlGgVTQIBaBZHQKX5n01ZTyd1fZQoaAZoCWgPQwhqTfOOU4duQJSGlFKUaBVNCAFoFkdApfpM4//vOXV9lChoBmgJaA9DCHfYRGauwG9AlIaUUpRoFU0AAWgWR0Cl+vQeeWfLdX2UKGgGaAloD0MItoDQeji2cUCUhpRSlGgVS/RoFkdApfucJF9a2XV9lChoBmgJaA9DCLdfPlnxGHBAlIaUUpRoFU0SAWgWR0Cl/FgIyCWedX2UKGgGaAloD0MIE3zT9FlAcUCUhpRSlGgVTQABaBZHQKX9CAc1fmd1fZQoaAZoCWgPQwguHXOeMTFyQJSGlFKUaBVL/GgWR0Cl/bb7j1f3dX2UKGgGaAloD0MIgoyACofWcUCUhpRSlGgVTQkBaBZHQKYBSbiqABl1fZQoaAZoCWgPQwiUFi6rcI1wQJSGlFKUaBVNAAFoFkdApgH8AmzBynV9lChoBmgJaA9DCIkI/yLob29AlIaUUpRoFUv7aBZHQKYCpRtP5591fZQoaAZoCWgPQwjAtKhPcihwQJSGlFKUaBVNAgFoFkdApgN95a/yoXV9lChoBmgJaA9DCIsYdhjTLHBAlIaUUpRoFU0KAWgWR0CmBGMwUQCkdX2UKGgGaAloD0MIach4lEplbUCUhpRSlGgVS/hoFkdApgU/7Lt/nXV9lChoBmgJaA9DCOz2WWVm93FAlIaUUpRoFU0WAWgWR0CmBksw+MZQdX2UKGgGaAloD0MIOZm4VRApcUCUhpRSlGgVTRQBaBZHQKYHU1Bt1p11ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 5870,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b58d2cf03fa0caf53e7f65f8fc7809d4dc0b4d3fb98a9f4a63ae3bf92471b90
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:669fc84dae6743c02db0a7b03913323276b0f7a72292d90d0b1b00cad102ec5b
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 259.7246499528249, "std_reward": 14.94035419587496, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T15:08:43.462224"}
|