--- license: other license_name: tongyi-qwen license_link: >- https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT pipeline_tag: image-text-to-text tags: - multimodal library_name: transformers base_model: - Qwen/Qwen2-0.5B --- # SliMM: A Simple LMM baseline with Dynamic Visual Resolution 🚀 [[🌐 Project Page](https://deepstack-vl.github.io/)] [[📚 Paper](https://arxiv.org/abs/2406.04334)] ## 🔥 Latest Update * [2024/12/12] Our [first version](https://huggingface.co/collections/menglc/slimm-675bd737c2965037a6b52d05) is out! We release a strong 0.5B baseline model [SliMM-Qwen2-0.5B](https://huggingface.co/menglc/SliMM-Qwen2-0.5B) and advanced baseline [SliMM-DeepStackM-Qwen2-0.5B](https://huggingface.co/menglc/SliMM-DeepStackM-Qwen2-0.5B). We release a strong 2B model [SliMM-DeepStackE-Qwen2VL-2B](https://huggingface.co/menglc/SliMM-DeepStackE-Qwen2VL-2B) continous fine-tuned from Qwen2VL-2B, which save 4x fewer visual tokens for LLM with. Training scrips are avaliable [here]()! ## Introduction * **Advanced Techniques**: We incorporate native dynamic resolution, as used in Qwen2-VL, for high-resolution visual encoding, replacing the previous cumbersome Multi-Crop/AnyRes methods. Moreover, building on DeepStack [1], we maintain the same principle of interting stacked visual tokens into **multiple layers** of the LLMs. We propose two enhanced versions for native resolution vision encoding: DeepStack-MidLayers, which improves performance with negligible additional FLOPs by stacking multi-level visual tokens from the middle layers of the vision encoder, and DeepStack-Efficient, which reduces visual token usage while maintaining high performance. * **Seamless Integration**: Easily use LLaVA-format training data in our codebase. * **Training Efficiency**: Fine-tuning on the 748K LLaVA-Next-DATA for on epoch takes only 4 hours for 0.5/2B Qwen2 and 6 hours for a 7B on 8xH100, which is more than 2x faster than LLaVA-OV codebase. * **Strong Baseline Model for Small LMMs**: We establish a robust baseline using widely-used public available datasets, including LCS-758K (Stage-1), LLaVA-OV-MidStage (Stage 1.5), and LLaVA-OneVision SI (Stage 2). [1] *DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs* ## Quick Start ```bash git clone https://github.com/MengLcool/SliMM.git cd SliMM pip install -e . ``` ```Python # this is very similar to qwen2-vl from slimm.model.processor import SliMMQwen2VLProcessor from slimm.model.slimm import SliMMForConditionalGeneration from slimm.model.utils_vl import process_vision_info model_path = "menglc/SliMM-Qwen2-0.5B" model = SliMMForConditionalGeneration.from_pretrained( model_path, torch_dtype="auto", device_map="auto" ) processor = SliMMQwen2VLProcessor.from_pretrained(model_path) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ## Benchmarks | Benchmark | MMMU (Val) | ChartQA (Test) | AI2D (test) | DocVQA (val) |-------------------------|------------|----------------|-------------|-------------| |NanoLLaVA-Qwen1.5-0.5B |28.6 | NA |NA |NA | |OmniVLM v1 |39.9 | 59.2 |NA |NA | |OmniVLM v2 |**40.0** | 61.9 |NA |NA | |LLaVA-OV-SI-Qwen2.5-0.5B |31.2 | 61.0 |54.2 |75.0 | |LLaVA-OV-Qwen2.5-0.5B |31.4 | 61.4 |57.1 |73.7 | |SliMM-Qwen2-0.5B |30.6 | 64.2 |58.4 |77.0 | |SliMM-DeepStackM-Qwen2-0.5B|**31.4** | **65.2** |**60.3** |**77.7** | ## 🔗 Citation If you find our work helpful, please consider citing our paper :paperclip: and starring our repo :star2: : ``` @inproceedings{meng2024deepstack, title={DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs}, author={Meng, Lingchen and Yang, Jianwei and Tian, Rui and Dai, Xiyang and Wu, Zuxuan and Gao, Jianfeng and Jiang, Yu-Gang}, booktitle={NeurIPS}, year={2024} } ```