Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-unit1.zip +2 -2
- ppo-LunarLander-v2-unit1/data +25 -25
- ppo-LunarLander-v2-unit1/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2-unit1/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 279.56 +/- 23.01
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79d82ae80790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79d82ae80820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79d82ae808b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79d82ae80940>", "_build": "<function ActorCriticPolicy._build at 0x79d82ae809d0>", "forward": "<function ActorCriticPolicy.forward at 0x79d82ae80a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79d82ae80af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79d82ae80b80>", "_predict": "<function ActorCriticPolicy._predict at 0x79d82ae80c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79d82ae80ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79d82ae80d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79d82ae80dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79d82ae7d380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691462066482451694, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAID0wb3ohcS8ThH1Ov6IZTvZ2pe8W4WPvAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9+A0bcXWSMAWyUTREBjAF0lEdAnf0C/O+qR3V9lChoBkdAUp4sg+yJK2gHS7hoCEdAnf4fJFLFoHV9lChoBkdAcShAdn0032gHS/VoCEdAnf+PNJOFg3V9lChoBkdAUJw0HhS9/WgHS51oCEdAngB+lKsdUHV9lChoBkdAcRH0tAcDKmgHTQIBaAhHQJ4CARoRIz51fZQoaAZHQFDFi48U21loB0u6aAhHQJ4ETGGVRk51fZQoaAZHQHJDPqcEvCdoB00NAWgIR0CeBdkHUtqYdX2UKGgGR0Bys6DlHSWraAdNLwFoCEdAngeoPf8/EHV9lChoBkdAcE/xEfDDTGgHTQwBaAhHQJ4JQKqn3td1fZQoaAZHQG3VF10T101oB0v9aAhHQJ4L3yDqW1N1fZQoaAZHQHGmcFdLQHBoB0vbaAhHQJ4NLwDvE0l1fZQoaAZHQHEvGn4wh4doB0vRaAhHQJ4ObBN21Ul1fZQoaAZHQHCa+l9BrvdoB00pAWgIR0CeECcKw6hhdX2UKGgGR0ByKLDR+jM3aAdL82gIR0CeEqhJRO1wdX2UKGgGR0Bt5fIKc/dJaAdL3WgIR0CeFALsa86FdX2UKGgGR0Bv59Mj/uLKaAdL+WgIR0CeFYC5EtuldX2UKGgGR0BxEYO+ZgG9aAdNDQFoCEdAnhca7ROUMXV9lChoBkdATqL06HTJAGgHS8NoCEdAnhlgtOEdvXV9lChoBkdAcvQv9LpRoGgHTQkBaAhHQJ4a8SlFc6h1fZQoaAZHQHKTQb6xgRdoB00EAWgIR0CeHPY6nzg/dX2UKGgGR0Bx/0vi97F9aAdNDAFoCEdAnh8EK/mDDnV9lChoBkdAb6ZDwYtQK2gHTQoBaAhHQJ4iv7zkIX11fZQoaAZHQFEzKYRdyDJoB0upaAhHQJ4kL7hvR7Z1fZQoaAZHQHG4Yd6sySFoB01VAWgIR0CeJuVxjriVdX2UKGgGR0BOuoRqXWvsaAdLqWgIR0CeJ+f+0gKXdX2UKGgGR0BxE2NaQmu1aAdNFAFoCEdAniqoppeu3nV9lChoBkdAUc6ZXuE252gHS5xoCEdAniuWQ8wHq3V9lChoBkdAc1DqAz544mgHTRUBaAhHQJ4tOamXPZ91fZQoaAZHQHHATnRsuWdoB0v7aAhHQJ4utUjs2Nx1fZQoaAZHQHDsFMmF8G9oB0v4aAhHQJ4wJnCfpUx1fZQoaAZHQHGemIO6NERoB0vtaAhHQJ4yvaK1og51fZQoaAZHQHD/U3n6l+FoB01MAWgIR0CeNMONYKYzdX2UKGgGR0Bu6hnUUfxMaAdNDAFoCEdAnjZXAmAskXV9lChoBkdAcNCPTodMkGgHTREBaAhHQJ45F5Qgs9V1fZQoaAZHQHKJdbPhQ3xoB0v/aAhHQJ46n0ulGgB1fZQoaAZHQG9g8Cgbp/xoB0v4aAhHQJ48G++M6zV1fZQoaAZHQG8WVk+X7choB00IAWgIR0CePbJp35erdX2UKGgGR0ByaWGUOd5IaAdNQgFoCEdAnkDF+AmReXV9lChoBkdAcAK9Tgl4T2gHS+JoCEdAnkIRDG96C3V9lChoBkdAcLZh4dIXj2gHS/doCEdAnkN4L1EmY3V9lChoBkdAT00+C9RJmWgHS7xoCEdAnkSU9IPK+3V9lChoBkdAcDfTGHYYi2gHTQEBaAhHQJ5HQifQKKJ1fZQoaAZHQHB0o0VJtixoB00WAWgIR0CeSPtF8XvZdX2UKGgGR0BzS8DU3GXHaAdNNwFoCEdAnkrRJ2+wknV9lChoBkdAcqaZs9B8hWgHS+ZoCEdAnkwaoMrmQ3V9lChoBkdAcf2fNzKcNGgHS9toCEdAnk6qMR6F/XV9lChoBkdAcE50qYqoZWgHTSEBaAhHQJ5Q/iqABkt1fZQoaAZHQHFjnfEXLvFoB01oAWgIR0CeU74oZydXdX2UKGgGR0BxeaJYT0xuaAdNCQFoCEdAnlXa1TisGXV9lChoBkdAcNdI3BHkLmgHTQgBaAhHQJ5ZfgxagVZ1fZQoaAZHQFSZ9OymhuhoB0unaAhHQJ5af1yvLYB1fZQoaAZHQG+I0WdmQKdoB0vraAhHQJ5b4g/1QIl1fZQoaAZHQHCm4Tj/+85oB00KAWgIR0CeXYBAv+OwdX2UKGgGR0BzLPE87p3YaAdNBwFoCEdAnmAhRIjGDXV9lChoBkdAc3eflZHNHGgHTQwBaAhHQJ5huHVPN3Z1fZQoaAZHQFQ9VVghKUVoB0ubaAhHQJ5iogaFVT91fZQoaAZHQHFe+lbeMydoB00IAWgIR0CeZClSCOFQdX2UKGgGR0BvP6CHymQ9aAdNCQFoCEdAnmbdKAavR3V9lChoBkdAScUVxjriVGgHS8hoCEdAnmgHl8w6AHV9lChoBkdAct75PuXu3WgHTQIBaAhHQJ5pjied07t1fZQoaAZHQHLh6FqSHM5oB00BAWgIR0CeaxDZUT+OdX2UKGgGR0BTtGbb1yvLaAdLumgIR0CebCMDwH7hdX2UKGgGR0Bt5WbobGWEaAdL5mgIR0Cebqw35vcadX2UKGgGR0ByWXlU6xPgaAdNCQFoCEdAnnBD2exwAHV9lChoBkdAcQPjTa0x/WgHS/9oCEdAnnHSkoF3ZHV9lChoBkdAcKRoIv8IiWgHTRcBaAhHQJ5zbazu4PR1fZQoaAZHQHHSgpe/pMZoB00nAWgIR0Cedj7I1cdHdX2UKGgGR0Bw/JmkFfReaAdNBwFoCEdAnnfGDpTuOXV9lChoBkdAcwaekYXO4WgHTQ0BaAhHQJ55Wd7OVxF1fZQoaAZHQEwIMJhOP/9oB0u2aAhHQJ56cmeDnNh1fZQoaAZHQHBh5w4sEq5oB0v5aAhHQJ58/rHEMsp1fZQoaAZHQG1hADRtxdZoB0vzaAhHQJ5+cZFXq7l1fZQoaAZHQFM8l7MPjGVoB0uWaAhHQJ5/T0mMOwx1fZQoaAZHQHMwrqlgtvpoB00EAWgIR0CegM91EE1VdX2UKGgGR0BxEAdmxt52aAdNGwFoCEdAnoRxQN0/4nV9lChoBkdAcRwLTQVsUWgHS+doCEdAnoZPSYw7DHV9lChoBkdAcVxazeGfw2gHS/xoCEdAnog8Jtzjm3V9lChoBkdActCHyEtdzGgHS/toCEdAnopXqZ+hG3V9lChoBkdAckjBtDUmUmgHTSkBaAhHQJ6NuHaews51fZQoaAZHQHA+ESqU/wBoB00CAWgIR0Cejz1ivxH5dX2UKGgGR0BuWEhePaL5aAdL+WgIR0CekKOxjawmdX2UKGgGR0Bylds7+1jRaAdL/2gIR0CekiVo6CDmdX2UKGgGR0By1nOB19v1aAdNLwFoCEdAnpUGg3974XV9lChoBkdAcdMxfOUt7WgHS+ZoCEdAnpZuOKfnOnV9lChoBkdAcKAmLtNSImgHS+VoCEdAnpfJN0vGqHV9lChoBkdAcnawh4dIXmgHS/loCEdAnplHVsk6cXV9lChoBkdAUKEpjMFEA2gHS3JoCEdAnpny+Yc/+3V9lChoBkdAcb1I6bONYWgHTQgBaAhHQJ6cy1UlzEJ1fZQoaAZHQHK/eGwiaApoB0vzaAhHQJ6eOAZsKsx1fZQoaAZHQEoIZ1FH8TBoB0u9aAhHQJ6fWXhOxjd1fZQoaAZHQHCOT4593KVoB0vqaAhHQJ6gt7JGOMl1fZQoaAZHQG2Bs8ox59poB00cAWgIR0Ceo4FMZgogdX2UKGgGR0BxM+n+AEt/aAdNLwFoCEdAnqVIysS00HV9lChoBkdAciuXEZR8+mgHTRABaAhHQJ6m6Haews51fZQoaAZHQHHi+tbLU1BoB0v2aAhHQJ6oUZl4C6p1fZQoaAZHQHFuiGnGbTdoB00XAWgIR0CeqxlQdjoZdX2UKGgGR0BwrHRfF72MaAdNCgFoCEdAnqyqmsNlRXV9lChoBkdAPUSXlbNbDGgHS7poCEdAnq3CFfzBh3V9lChoBkdAcM81XNke62gHS/poCEdAnq8/RNRFZ3V9lChoBkdAZFd4QjD8+GgHTegDaAhHQJ63NQizLOl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c8c91074a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c8c91074af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c8c91074b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c8c91074c10>", "_build": "<function ActorCriticPolicy._build at 0x7c8c91074ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7c8c91074d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c8c91074dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c8c91074e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7c8c91074ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c8c91074f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c8c91075000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c8c91075090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c8c9106d700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691482247031474118, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM39pDwNfBk+StMWvUAej75IV3Q7hBbCOQAAAAAAAAAAZiZCurWfXz7gvLC85/KTvp1bszuDMEi9AAAAAAAAAAAaeFQ9Hi6hP9/cnj6b8iK/6oPZPIqTLj4AAAAAAAAAAMB8kz3szWc/vk9YPgDzMr+hSLQ9ziCbPQAAAAAAAAAAQOdKvsWTjz9jnwi/rnobv8yetr4FY76+AAAAAAAAAAAAZ/G8w8FeuozvoLTk81mv/9AkOdoFhjMAAIA/AACAPzMiqDyvzCU9mLRmvtWTHr5h3uy8ZOCZvQAAAAAAAAAAiz+mvv9QPj8Mcso9wS0iv7z8A7/d/zQ+AAAAAAAAAACmlea9w6krP42BWz3jaNS+ZkAkvoLutz0AAAAAAAAAAFqx5D0fRcG7TiTNvPR4/rxXkO28JWlIPgAAgD8AAAAAwBGIvYq3Cz5+0pA+vHuwvk/2rj33lSE9AAAAAAAAAACaKC6+Z3tIP69bBr51HAu/XGqovgq0RDwAAAAAAAAAADM7sLvDNWy4kuxvPcGMgzy1u9q5ON5lvQAAgD8AAIA/ujwcPhyJULyNpQM+XpaWvJ2oxb0m1nW9AACAPwAAgD8ab6M9+LGSPVI2tL27snW+SAYXPT3Z5jwAAAAAAAAAAIa7Or56fhE/+Em4PcnS4b75gDe+rV0oPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE+YgZjx0+2MAWyUS6qMAXSUR0Cxk/vHYHxCdX2UKGgGR0ByI6p97WupaAdL2WgIR0CxlCzpPhybdX2UKGgGR0BwI6U4aP0aaAdL0WgIR0CxlDUcwQDndX2UKGgGR0Bw52BDohZAaAdL52gIR0CxlHIV6/qPdX2UKGgGR0BwIYDGLk0aaAdL9mgIR0CxlIAr1/UfdX2UKGgGR0BzhAymALApaAdL6mgIR0CxlIPNiYsvdX2UKGgGR0Bv8g8wHqu9aAdLwmgIR0CxlJo1LrX2dX2UKGgGR0BxRQ9GI9DAaAdL1GgIR0CxlKIP9UCJdX2UKGgGR0BujsQiA2AHaAdLzGgIR0CxlKjlYEGJdX2UKGgGR0BzVzUSZjQRaAdLxmgIR0CxlP/xQSBcdX2UKGgGR0BwwHZ39rGjaAdL42gIR0CxlRDQzDXOdX2UKGgGR0BwGhRvWH1waAdL12gIR0CxlR23z+WGdX2UKGgGR0Bz3jeSB9ThaAdL4GgIR0CxlTvqoqCpdX2UKGgGR0BxGaNQ0oBraAdLxmgIR0CxlT6pDNQkdX2UKGgGR0ByiLSro4dZaAdLyGgIR0CxlUWPcSGrdX2UKGgGR0BzQ5bFCLMtaAdL/GgIR0CxlUhs2vSudX2UKGgGR0BweUr1/Ue/aAdL6WgIR0CxlUrbUPQOdX2UKGgGR0Bx6di5NGmUaAdL3mgIR0CxlYUSqU/wdX2UKGgGR0Bzy2JXQtz0aAdL02gIR0CxlbZkCmuUdX2UKGgGR0BQF0q6OHWSaAdLrWgIR0CxlbQRsdkrdX2UKGgGR0BxbpeNT987aAdL1WgIR0Cxlcqr7wazdX2UKGgGR0ByAkLc9GI9aAdL12gIR0CxldG1lXijdX2UKGgGR0By/q6Ae7tiaAdL1mgIR0Cxle8hLXcydX2UKGgGR0Bxt55UtI07aAdL8GgIR0Cxlg9GViWndX2UKGgGR0BzRt86V+qjaAdNMwFoCEdAsZYWr/82rHV9lChoBkdAcx0nanJkoWgHS71oCEdAsZY2801qFnV9lChoBkdAcSwn+Q2dd2gHS9VoCEdAsZrPuXu3MXV9lChoBkdAdAkXVLBbfWgHS+toCEdAsZrW+h4+r3V9lChoBkdAcS6byYoiLWgHS8RoCEdAsZriDM/yG3V9lChoBkdActmLeANG3GgHS9poCEdAsZr7EMspX3V9lChoBkdAcP9ha1TisGgHS+BoCEdAsZsL225QQHV9lChoBkdAb/1F1jiGWWgHS+ZoCEdAsZsa3trsSnV9lChoBkdAc1riHZbpvGgHS+BoCEdAsZtSXZ5AyHV9lChoBkdAcPFrxiG34WgHS9doCEdAsZt21/lQuXV9lChoBkdAcUBSL61stWgHS9ZoCEdAsZuO4rjHXHV9lChoBkdAclfUzsQd0mgHS+RoCEdAsZugG9pRGnV9lChoBkdAcPOHIZIg/2gHS+9oCEdAsZue5RTCL3V9lChoBkdAcHX08vEjxGgHS89oCEdAsZuk7JW/8HV9lChoBkdAMOmNipeeF2gHS5loCEdAsZvNiqhlDnV9lChoBkdAcW4QarFOwmgHS85oCEdAsZvM83dbgXV9lChoBkdAcJRxTsIE82gHS8BoCEdAsZvY/MW43HV9lChoBkdAcf8B+F10T2gHTQ0BaAhHQLGcLI065oZ1fZQoaAZHQHIFfdRBNVRoB0vQaAhHQLGcNsIVuaZ1fZQoaAZHQHCXBIe5nUVoB0u/aAhHQLGcRBTXJ5p1fZQoaAZHQHOXaZhKDkFoB0vmaAhHQLGcTvMKTjh1fZQoaAZHQHNV1Iqbz9VoB0vqaAhHQLGcdP2wmmd1fZQoaAZHQHL8znFHavloB0vXaAhHQLGcdv6j3251fZQoaAZHQFA5nssxwhpoB0upaAhHQLGcm1SwW311fZQoaAZHQHDdNO2y9mJoB0vbaAhHQLGcsqYJE6V1fZQoaAZHQG9GPDP4VRFoB0vOaAhHQLGc52eg+Ql1fZQoaAZHQHMO29cry2BoB0vSaAhHQLGc7+W4Vh11fZQoaAZHQHC1RKtga3toB0vZaAhHQLGc/+so2GZ1fZQoaAZHQHIub9/BnBdoB0v3aAhHQLGdBosZpBZ1fZQoaAZHQHNSCH6/IsBoB0vOaAhHQLGdFiblRxd1fZQoaAZHQHI5tqHoHLRoB0veaAhHQLGdPUDuBtl1fZQoaAZHQHCUdgrpaA5oB0vzaAhHQLGdUulGgBd1fZQoaAZHQHH4DyWiUPhoB0u3aAhHQLGdcuOS4e91fZQoaAZHQG55OEEkjX5oB0vSaAhHQLGdeM3qAz51fZQoaAZHQHBA6q4pc5doB0vJaAhHQLGdtDdP+GZ1fZQoaAZHQHBqraZhKDloB0v1aAhHQLGduHUMG5d1fZQoaAZHQHF1szVMEidoB0v8aAhHQLGd0xd6cAl1fZQoaAZHQHAv1xOtW+5oB0vaaAhHQLGd0tXgccV1fZQoaAZHQHJkULhJiAloB0u/aAhHQLGd5ki2Ujd1fZQoaAZHQElR40Mw1zhoB0ukaAhHQLGd9IvalDZ1fZQoaAZHQHBCUY0l7dBoB0u1aAhHQLGeBZPVNHp1fZQoaAZHQG4vjSPU8V5oB0vmaAhHQLGeCmnO0LN1fZQoaAZHQHIHCoCMglpoB0u0aAhHQLGeGPC2tuF1fZQoaAZHQG/DTn7pFCtoB0u+aAhHQLGeMUYbbUR1fZQoaAZHQHIz4ysS00FoB0vQaAhHQLGea6J66at1fZQoaAZHQHKsYFqzqr1oB0vjaAhHQLGexArQPZt1fZQoaAZHQHH/nBHkLhJoB0vhaAhHQLGe3oB7u2J1fZQoaAZHQHNn+NDMNc5oB0u4aAhHQLGfFBVMmF91fZQoaAZHQHC+ZbyH2ytoB0vraAhHQLGfJqebutx1fZQoaAZHQHRauws5GSZoB0vsaAhHQLGfMZyMkyF1fZQoaAZHQHGOGNedCmdoB0vnaAhHQLGffPPszEd1fZQoaAZHQHG11FlTWG1oB0vdaAhHQLGfiuFYdQx1fZQoaAZHQHJH1Bt1p0xoB0veaAhHQLGfjsgMc6x1fZQoaAZHQHNM1x0dRzloB0vSaAhHQLGfomcOLBN1fZQoaAZHQHNOlYU34sVoB0vcaAhHQLGf72hZha11fZQoaAZHQHG6t8qnWJ9oB0v/aAhHQLGf8NIbwSd1fZQoaAZHQHGJHEAHVwxoB0vyaAhHQLGgA94eLeh1fZQoaAZHQHDjrfk3juNoB0veaAhHQLGgFK3NLUV1fZQoaAZHQHEmcyeqaPVoB0vBaAhHQLGgE6pYLb51fZQoaAZHQHGZ5hrnDBNoB0v3aAhHQLGgGDQZ4wB1fZQoaAZHQG2LsuvllshoB0u+aAhHQLGgXlsP8Q91fZQoaAZHQGNLLzwtrbhoB03oA2gIR0CxoGs7EHdHdX2UKGgGR0BvKP8IiTt+aAdLy2gIR0CxoMc1baAXdX2UKGgGR0BxgVnSOR1YaAdL0GgIR0CxoOdMPBi1dX2UKGgGR0BysWLk0aZQaAdLzGgIR0CxoOwP3BYWdX2UKGgGR0Bwa+g3974SaAdNCAFoCEdAsaEciY9gW3V9lChoBkdAce99Dx9XtGgHS8BoCEdAsaEnEtNBW3V9lChoBkdAc40d6LOzIGgHS8hoCEdAsaEpuGbkO3V9lChoBkdAc3HXdj5KvmgHS9toCEdAsaFMvmHP/3V9lChoBkdAcbl9TxXnyWgHS+5oCEdAsaF3yqdYn3V9lChoBkdAcZYE7nxJ/WgHS8hoCEdAsaGBmpVCHHV9lChoBkdAceDfxMFlkGgHS9xoCEdAsaGUAn2IwnV9lChoBkdAcZ2afBeok2gHS9hoCEdAsaGjnB+F13V9lChoBkdAchR+VTrE+GgHS/NoCEdAsaG1b+tKZnV9lChoBkdAcEak5IYm9mgHS+loCEdAsaG+q+8Gs3V9lChoBkdAcVAjwQUYbmgHS9JoCEdAsaHVb3XZoXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQU2d2tVWbJHrsgyAr1wWeXYwDaW5jlIoRUd7SfAt4EE5anVCEeRR5zQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-unit1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4139ed4a69fc9e7b2d6d3af041493cfc2e88b94f4a5c6bcbcb262bd6698e5083
|
3 |
+
size 146868
|
ppo-LunarLander-v2-unit1/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -69,16 +69,16 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
-
"_np_random":
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
"n_steps": 1024,
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c8c91074a60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c8c91074af0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c8c91074b80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c8c91074c10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c8c91074ca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c8c91074d30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c8c91074dc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c8c91074e50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c8c91074ee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c8c91074f70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c8c91075000>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c8c91075090>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c8c9106d700>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1691482247031474118,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM39pDwNfBk+StMWvUAej75IV3Q7hBbCOQAAAAAAAAAAZiZCurWfXz7gvLC85/KTvp1bszuDMEi9AAAAAAAAAAAaeFQ9Hi6hP9/cnj6b8iK/6oPZPIqTLj4AAAAAAAAAAMB8kz3szWc/vk9YPgDzMr+hSLQ9ziCbPQAAAAAAAAAAQOdKvsWTjz9jnwi/rnobv8yetr4FY76+AAAAAAAAAAAAZ/G8w8FeuozvoLTk81mv/9AkOdoFhjMAAIA/AACAPzMiqDyvzCU9mLRmvtWTHr5h3uy8ZOCZvQAAAAAAAAAAiz+mvv9QPj8Mcso9wS0iv7z8A7/d/zQ+AAAAAAAAAACmlea9w6krP42BWz3jaNS+ZkAkvoLutz0AAAAAAAAAAFqx5D0fRcG7TiTNvPR4/rxXkO28JWlIPgAAgD8AAAAAwBGIvYq3Cz5+0pA+vHuwvk/2rj33lSE9AAAAAAAAAACaKC6+Z3tIP69bBr51HAu/XGqovgq0RDwAAAAAAAAAADM7sLvDNWy4kuxvPcGMgzy1u9q5ON5lvQAAgD8AAIA/ujwcPhyJULyNpQM+XpaWvJ2oxb0m1nW9AACAPwAAgD8ab6M9+LGSPVI2tL27snW+SAYXPT3Z5jwAAAAAAAAAAIa7Or56fhE/+Em4PcnS4b75gDe+rV0oPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE+YgZjx0+2MAWyUS6qMAXSUR0Cxk/vHYHxCdX2UKGgGR0ByI6p97WupaAdL2WgIR0CxlCzpPhybdX2UKGgGR0BwI6U4aP0aaAdL0WgIR0CxlDUcwQDndX2UKGgGR0Bw52BDohZAaAdL52gIR0CxlHIV6/qPdX2UKGgGR0BwIYDGLk0aaAdL9mgIR0CxlIAr1/UfdX2UKGgGR0BzhAymALApaAdL6mgIR0CxlIPNiYsvdX2UKGgGR0Bv8g8wHqu9aAdLwmgIR0CxlJo1LrX2dX2UKGgGR0BxRQ9GI9DAaAdL1GgIR0CxlKIP9UCJdX2UKGgGR0BujsQiA2AHaAdLzGgIR0CxlKjlYEGJdX2UKGgGR0BzVzUSZjQRaAdLxmgIR0CxlP/xQSBcdX2UKGgGR0BwwHZ39rGjaAdL42gIR0CxlRDQzDXOdX2UKGgGR0BwGhRvWH1waAdL12gIR0CxlR23z+WGdX2UKGgGR0Bz3jeSB9ThaAdL4GgIR0CxlTvqoqCpdX2UKGgGR0BxGaNQ0oBraAdLxmgIR0CxlT6pDNQkdX2UKGgGR0ByiLSro4dZaAdLyGgIR0CxlUWPcSGrdX2UKGgGR0BzQ5bFCLMtaAdL/GgIR0CxlUhs2vSudX2UKGgGR0BweUr1/Ue/aAdL6WgIR0CxlUrbUPQOdX2UKGgGR0Bx6di5NGmUaAdL3mgIR0CxlYUSqU/wdX2UKGgGR0Bzy2JXQtz0aAdL02gIR0CxlbZkCmuUdX2UKGgGR0BQF0q6OHWSaAdLrWgIR0CxlbQRsdkrdX2UKGgGR0BxbpeNT987aAdL1WgIR0Cxlcqr7wazdX2UKGgGR0ByAkLc9GI9aAdL12gIR0CxldG1lXijdX2UKGgGR0By/q6Ae7tiaAdL1mgIR0Cxle8hLXcydX2UKGgGR0Bxt55UtI07aAdL8GgIR0Cxlg9GViWndX2UKGgGR0BzRt86V+qjaAdNMwFoCEdAsZYWr/82rHV9lChoBkdAcx0nanJkoWgHS71oCEdAsZY2801qFnV9lChoBkdAcSwn+Q2dd2gHS9VoCEdAsZrPuXu3MXV9lChoBkdAdAkXVLBbfWgHS+toCEdAsZrW+h4+r3V9lChoBkdAcS6byYoiLWgHS8RoCEdAsZriDM/yG3V9lChoBkdActmLeANG3GgHS9poCEdAsZr7EMspX3V9lChoBkdAcP9ha1TisGgHS+BoCEdAsZsL225QQHV9lChoBkdAb/1F1jiGWWgHS+ZoCEdAsZsa3trsSnV9lChoBkdAc1riHZbpvGgHS+BoCEdAsZtSXZ5AyHV9lChoBkdAcPFrxiG34WgHS9doCEdAsZt21/lQuXV9lChoBkdAcUBSL61stWgHS9ZoCEdAsZuO4rjHXHV9lChoBkdAclfUzsQd0mgHS+RoCEdAsZugG9pRGnV9lChoBkdAcPOHIZIg/2gHS+9oCEdAsZue5RTCL3V9lChoBkdAcHX08vEjxGgHS89oCEdAsZuk7JW/8HV9lChoBkdAMOmNipeeF2gHS5loCEdAsZvNiqhlDnV9lChoBkdAcW4QarFOwmgHS85oCEdAsZvM83dbgXV9lChoBkdAcJRxTsIE82gHS8BoCEdAsZvY/MW43HV9lChoBkdAcf8B+F10T2gHTQ0BaAhHQLGcLI065oZ1fZQoaAZHQHIFfdRBNVRoB0vQaAhHQLGcNsIVuaZ1fZQoaAZHQHCXBIe5nUVoB0u/aAhHQLGcRBTXJ5p1fZQoaAZHQHOXaZhKDkFoB0vmaAhHQLGcTvMKTjh1fZQoaAZHQHNV1Iqbz9VoB0vqaAhHQLGcdP2wmmd1fZQoaAZHQHL8znFHavloB0vXaAhHQLGcdv6j3251fZQoaAZHQFA5nssxwhpoB0upaAhHQLGcm1SwW311fZQoaAZHQHDdNO2y9mJoB0vbaAhHQLGcsqYJE6V1fZQoaAZHQG9GPDP4VRFoB0vOaAhHQLGc52eg+Ql1fZQoaAZHQHMO29cry2BoB0vSaAhHQLGc7+W4Vh11fZQoaAZHQHC1RKtga3toB0vZaAhHQLGc/+so2GZ1fZQoaAZHQHIub9/BnBdoB0v3aAhHQLGdBosZpBZ1fZQoaAZHQHNSCH6/IsBoB0vOaAhHQLGdFiblRxd1fZQoaAZHQHI5tqHoHLRoB0veaAhHQLGdPUDuBtl1fZQoaAZHQHCUdgrpaA5oB0vzaAhHQLGdUulGgBd1fZQoaAZHQHH4DyWiUPhoB0u3aAhHQLGdcuOS4e91fZQoaAZHQG55OEEkjX5oB0vSaAhHQLGdeM3qAz51fZQoaAZHQHBA6q4pc5doB0vJaAhHQLGdtDdP+GZ1fZQoaAZHQHBqraZhKDloB0v1aAhHQLGduHUMG5d1fZQoaAZHQHF1szVMEidoB0v8aAhHQLGd0xd6cAl1fZQoaAZHQHAv1xOtW+5oB0vaaAhHQLGd0tXgccV1fZQoaAZHQHJkULhJiAloB0u/aAhHQLGd5ki2Ujd1fZQoaAZHQElR40Mw1zhoB0ukaAhHQLGd9IvalDZ1fZQoaAZHQHBCUY0l7dBoB0u1aAhHQLGeBZPVNHp1fZQoaAZHQG4vjSPU8V5oB0vmaAhHQLGeCmnO0LN1fZQoaAZHQHIHCoCMglpoB0u0aAhHQLGeGPC2tuF1fZQoaAZHQG/DTn7pFCtoB0u+aAhHQLGeMUYbbUR1fZQoaAZHQHIz4ysS00FoB0vQaAhHQLGea6J66at1fZQoaAZHQHKsYFqzqr1oB0vjaAhHQLGexArQPZt1fZQoaAZHQHH/nBHkLhJoB0vhaAhHQLGe3oB7u2J1fZQoaAZHQHNn+NDMNc5oB0u4aAhHQLGfFBVMmF91fZQoaAZHQHC+ZbyH2ytoB0vraAhHQLGfJqebutx1fZQoaAZHQHRauws5GSZoB0vsaAhHQLGfMZyMkyF1fZQoaAZHQHGOGNedCmdoB0vnaAhHQLGffPPszEd1fZQoaAZHQHG11FlTWG1oB0vdaAhHQLGfiuFYdQx1fZQoaAZHQHJH1Bt1p0xoB0veaAhHQLGfjsgMc6x1fZQoaAZHQHNM1x0dRzloB0vSaAhHQLGfomcOLBN1fZQoaAZHQHNOlYU34sVoB0vcaAhHQLGf72hZha11fZQoaAZHQHG6t8qnWJ9oB0v/aAhHQLGf8NIbwSd1fZQoaAZHQHGJHEAHVwxoB0vyaAhHQLGgA94eLeh1fZQoaAZHQHDjrfk3juNoB0veaAhHQLGgFK3NLUV1fZQoaAZHQHEmcyeqaPVoB0vBaAhHQLGgE6pYLb51fZQoaAZHQHGZ5hrnDBNoB0v3aAhHQLGgGDQZ4wB1fZQoaAZHQG2LsuvllshoB0u+aAhHQLGgXlsP8Q91fZQoaAZHQGNLLzwtrbhoB03oA2gIR0CxoGs7EHdHdX2UKGgGR0BvKP8IiTt+aAdLy2gIR0CxoMc1baAXdX2UKGgGR0BxgVnSOR1YaAdL0GgIR0CxoOdMPBi1dX2UKGgGR0BysWLk0aZQaAdLzGgIR0CxoOwP3BYWdX2UKGgGR0Bwa+g3974SaAdNCAFoCEdAsaEciY9gW3V9lChoBkdAce99Dx9XtGgHS8BoCEdAsaEnEtNBW3V9lChoBkdAc40d6LOzIGgHS8hoCEdAsaEpuGbkO3V9lChoBkdAc3HXdj5KvmgHS9toCEdAsaFMvmHP/3V9lChoBkdAcbl9TxXnyWgHS+5oCEdAsaF3yqdYn3V9lChoBkdAcZYE7nxJ/WgHS8hoCEdAsaGBmpVCHHV9lChoBkdAceDfxMFlkGgHS9xoCEdAsaGUAn2IwnV9lChoBkdAcZ2afBeok2gHS9hoCEdAsaGjnB+F13V9lChoBkdAchR+VTrE+GgHS/NoCEdAsaG1b+tKZnV9lChoBkdAcEak5IYm9mgHS+loCEdAsaG+q+8Gs3V9lChoBkdAcVAjwQUYbmgHS9JoCEdAsaHVb3XZoXVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 492,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQU2d2tVWbJHrsgyAr1wWeXYwDaW5jlIoRUd7SfAt4EE5anVCEeRR5zQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
},
|
79 |
+
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
+
"gamma": 0.995,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
ppo-LunarLander-v2-unit1/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdfff88c3f8de1397c740eea2e74d4f0961770bfc57cb916cb057e8c2942d3ab
|
3 |
size 87929
|
ppo-LunarLander-v2-unit1/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:108fc96ed622303e2d6e7e930959ba205d076f7ce2d2a9fcc2255b85dbc7fb16
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 279.558691, "std_reward": 23.006181879968683, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-08T08:47:47.869344"}
|