--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:13842 - loss:MultipleNegativesRankingLoss base_model: microsoft/mpnet-base widget: - source_sentence: Bir adam bir elinde kahve fincanı, diğer elinde tuvalet fırçası ile tuvaletin önünde duruyor. sentences: - Şef ve orkestra oturmuyor. - Bir adam bir banyoda duruyor. - Bir adam kahve demlemeye çalışıyor. - source_sentence: Sarı ceketli ve siyah pantolonlu iki adam madalyalara sahip. sentences: - Erkeklere bir noktada bir ödül verilmiştir. - Başlangıçtaki net ölçek faydası, ücret primleri olsun ya da olmasın, pozitiftir. - Adamlar düz kırmızı ceketler ve mavi pantolonlar giymiş. - source_sentence: 'Restoran zinciri içi: Planet Hollywood, çeşitli film hatıraları mekânı süslüyor.' sentences: - Kadın bir şey tutuyor. - Bir restoranın içi. - Yeni gümüş makinelerin bulunduğu bir çamaşırhane içi. - source_sentence: İki çocuk, binanın yakınındaki kaldırımda sokakta koşuyor. sentences: - Çocuklar dışarıda. - Bazı odaların dışına balkonları vardır. - Çocuklar içeride. - source_sentence: Ağaçlarla çevrili bulvar denize üç bloktan daha az uzanıyor. sentences: - Deniz üç sokak bile uzakta değil. - Çocuk başını duvardaki bir delikten geçiriyor. - Denize ulaşmak için caddeden iki mil yol almanız gerekiyor. datasets: - mertcobanov/all-nli-triplets-turkish pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy model-index: - name: MPNet base trained on AllNLI-turkish triplets results: - task: type: triplet name: Triplet dataset: name: all nli dev turkish type: all-nli-dev-turkish metrics: - type: cosine_accuracy value: 0.7422539489671932 name: Cosine Accuracy - task: type: triplet name: Triplet dataset: name: all nli test turkish type: all-nli-test-turkish metrics: - type: cosine_accuracy value: 0.7503404448479346 name: Cosine Accuracy --- # MPNet base trained on AllNLI-turkish triplets This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("mertcobanov/mpnet-base-all-nli-triplet-turkish-v3") # Run inference sentences = [ 'Ağaçlarla çevrili bulvar denize üç bloktan daha az uzanıyor.', 'Deniz üç sokak bile uzakta değil.', 'Denize ulaşmak için caddeden iki mil yol almanız gerekiyor.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Datasets: `all-nli-dev-turkish` and `all-nli-test-turkish` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | all-nli-dev-turkish | all-nli-test-turkish | |:--------------------|:--------------------|:---------------------| | **cosine_accuracy** | **0.7423** | **0.7503** | ## Training Details ### Training Dataset #### all-nli-triplets-turkish * Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [bff203b](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/bff203b01bbf5b818f7ad85be0adbe8d64eba9ee) * Size: 13,842 training samples * Columns: anchor_translated, positive_translated, and negative_translated * Approximate statistics based on the first 1000 samples: | | anchor_translated | positive_translated | negative_translated | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor_translated | positive_translated | negative_translated | |:-----------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| | Asyalı okul çocukları birbirlerinin omuzlarında oturuyor. | Okul çocukları bir arada | Asyalı fabrika işçileri oturuyor. | | İnsanlar dışarıda. | Arka planda resmi kıyafetler giymiş bir grup insan var ve beyaz gömlekli, haki pantolonlu bir adam toprak yoldan yeşil çimenlere atlıyor. | Bir odada üç kişiyle birlikte büyük bir kamera tutan bir adam. | | Bir adam dışarıda. | Adam yarış sırasında yan sepetten bir su birikintisine düşer. | Beyaz bir sarık sarmış gömleksiz bir adam bir ağaç gövdesine tırmanıyor. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### all-nli-triplets-turkish * Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [bff203b](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/bff203b01bbf5b818f7ad85be0adbe8d64eba9ee) * Size: 6,584 evaluation samples * Columns: anchor_translated, positive_translated, and negative_translated * Approximate statistics based on the first 1000 samples: | | anchor_translated | positive_translated | negative_translated | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor_translated | positive_translated | negative_translated | |:--------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------| | Ayrıca, bu özel tüketim vergileri, diğer vergiler gibi, hükümetin ödeme zorunluluğunu sağlama yetkisini kullanarak belirlenir. | Hükümetin ödeme zorlaması, özel tüketim vergilerinin nasıl hesaplandığını belirler. | Özel tüketim vergileri genel kuralın bir istisnasıdır ve aslında GSYİH payına dayalı olarak belirlenir. | | Gri bir sweatshirt giymiş bir sanatçı, canlı renklerde bir kasaba tablosu üzerinde çalışıyor. | Bir ressam gri giysiler içinde bir kasabanın resmini yapıyor. | Bir kişi bir beyzbol sopası tutuyor ve gelen bir atış için planda bekliyor. | | İmkansız. | Yapılamaz. | Tamamen mümkün. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 10 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | all-nli-dev-turkish_cosine_accuracy | all-nli-test-turkish_cosine_accuracy | |:------:|:----:|:-------------:|:---------------:|:-----------------------------------:|:------------------------------------:| | 0 | 0 | - | - | 0.6092 | - | | 0.1155 | 100 | 3.3654 | 2.9084 | 0.6624 | - | | 0.2309 | 200 | 2.6321 | 1.7277 | 0.7395 | - | | 0.3464 | 300 | 1.9629 | 1.5000 | 0.7512 | - | | 0.4619 | 400 | 1.6662 | 1.4965 | 0.7494 | - | | 0.5774 | 500 | 1.4712 | 1.5374 | 0.7418 | - | | 0.6928 | 600 | 1.0429 | 1.6301 | 0.7360 | - | | 0.8083 | 700 | 0.8995 | 2.1626 | 0.7044 | - | | 0.9238 | 800 | 0.7269 | 2.0440 | 0.6996 | - | | 1.0381 | 900 | 1.0584 | 1.6714 | 0.7438 | - | | 1.1536 | 1000 | 1.1864 | 1.5326 | 0.7495 | - | | 1.2691 | 1100 | 1.0193 | 1.4498 | 0.7518 | - | | 1.3845 | 1200 | 0.8237 | 1.5399 | 0.7506 | - | | 1.5 | 1300 | 0.8279 | 1.6747 | 0.7521 | - | | 1.6155 | 1400 | 0.626 | 1.5776 | 0.7453 | - | | 1.7309 | 1500 | 0.5396 | 1.8877 | 0.7139 | - | | 1.8464 | 1600 | 0.4294 | 2.2258 | 0.6947 | - | | 1.9619 | 1700 | 0.4988 | 1.8753 | 0.7204 | - | | 2.0762 | 1800 | 0.6987 | 1.5408 | 0.7524 | - | | 2.1917 | 1900 | 0.6684 | 1.4434 | 0.7618 | - | | 2.3072 | 2000 | 0.6072 | 1.4840 | 0.7520 | - | | 2.4226 | 2100 | 0.5081 | 1.5225 | 0.7561 | - | | 2.5381 | 2200 | 0.5216 | 1.5280 | 0.7514 | - | | 2.6536 | 2300 | 0.2627 | 1.8830 | 0.7227 | - | | 2.7691 | 2400 | 0.2585 | 1.9529 | 0.7221 | - | | 2.8845 | 2500 | 0.129 | 2.2323 | 0.7047 | - | | 3.0 | 2600 | 0.1698 | 2.2904 | 0.7063 | - | | 3.1143 | 2700 | 0.5559 | 1.6110 | 0.7553 | - | | 3.2298 | 2800 | 0.4356 | 1.5544 | 0.7508 | - | | 3.3453 | 2900 | 0.3886 | 1.5437 | 0.7539 | - | | 3.4607 | 3000 | 0.3573 | 1.6262 | 0.7539 | - | | 3.5762 | 3100 | 0.2652 | 1.8391 | 0.7321 | - | | 3.6917 | 3200 | 0.0765 | 2.0359 | 0.7186 | - | | 3.8072 | 3300 | 0.0871 | 2.0946 | 0.7262 | - | | 3.9226 | 3400 | 0.0586 | 2.2168 | 0.7093 | - | | 4.0370 | 3500 | 0.1755 | 1.7567 | 0.7462 | - | | 4.1524 | 3600 | 0.3397 | 1.7735 | 0.7442 | - | | 4.2679 | 3700 | 0.3067 | 1.7475 | 0.7497 | - | | 4.3834 | 3800 | 0.246 | 1.7075 | 0.7476 | - | | 4.4988 | 3900 | 0.253 | 1.7648 | 0.7483 | - | | 4.6143 | 4000 | 0.1223 | 1.9139 | 0.7246 | - | | 4.7298 | 4100 | 0.0453 | 2.1138 | 0.7152 | - | | 4.8453 | 4200 | 0.0241 | 2.2354 | 0.7240 | - | | 4.9607 | 4300 | 0.0363 | 2.3080 | 0.7251 | - | | 5.0751 | 4400 | 0.1897 | 1.7394 | 0.7494 | - | | 5.1905 | 4500 | 0.2114 | 1.6929 | 0.7524 | - | | 5.3060 | 4600 | 0.2101 | 1.7402 | 0.7556 | - | | 5.4215 | 4700 | 0.1471 | 1.7990 | 0.7445 | - | | 5.5370 | 4800 | 0.1783 | 1.8060 | 0.7456 | - | | 5.6524 | 4900 | 0.0215 | 2.0118 | 0.7325 | - | | 5.7679 | 5000 | 0.0083 | 2.0766 | 0.7265 | - | | 5.8834 | 5100 | 0.0138 | 2.2054 | 0.7201 | - | | 5.9988 | 5200 | 0.0144 | 2.1667 | 0.7164 | - | | 6.1132 | 5300 | 0.2023 | 1.7309 | 0.7543 | - | | 6.2286 | 5400 | 0.1356 | 1.6685 | 0.7622 | - | | 6.3441 | 5500 | 0.1307 | 1.7292 | 0.7527 | - | | 6.4596 | 5600 | 0.1222 | 1.8403 | 0.7435 | - | | 6.5751 | 5700 | 0.1049 | 1.8456 | 0.7394 | - | | 6.6905 | 5800 | 0.0051 | 1.9898 | 0.7362 | - | | 6.8060 | 5900 | 0.0131 | 2.0532 | 0.7310 | - | | 6.9215 | 6000 | 0.0132 | 2.2237 | 0.7186 | - | | 7.0358 | 6100 | 0.0453 | 1.8965 | 0.7397 | - | | 7.1513 | 6200 | 0.1109 | 1.7195 | 0.7550 | - | | 7.2667 | 6300 | 0.1002 | 1.7547 | 0.7530 | - | | 7.3822 | 6400 | 0.0768 | 1.7701 | 0.7433 | - | | 7.4977 | 6500 | 0.0907 | 1.8472 | 0.7406 | - | | 7.6132 | 6600 | 0.038 | 1.9162 | 0.7377 | - | | 7.7286 | 6700 | 0.0151 | 1.9407 | 0.7312 | - | | 7.8441 | 6800 | 0.0087 | 1.9657 | 0.7289 | - | | 7.9596 | 6900 | 0.0104 | 2.0302 | 0.7227 | - | | 8.0739 | 7000 | 0.0727 | 1.8692 | 0.7514 | - | | 8.1894 | 7100 | 0.0733 | 1.8039 | 0.7520 | - | | 8.3048 | 7200 | 0.0728 | 1.7400 | 0.7539 | - | | 8.4203 | 7300 | 0.0537 | 1.8062 | 0.7461 | - | | 8.5358 | 7400 | 0.059 | 1.8469 | 0.7489 | - | | 8.6513 | 7500 | 0.0089 | 1.9033 | 0.7403 | - | | 8.7667 | 7600 | 0.0034 | 1.9683 | 0.7354 | - | | 8.8822 | 7700 | 0.0018 | 2.0075 | 0.7366 | - | | 8.9977 | 7800 | 0.0023 | 2.0646 | 0.7322 | - | | 9.1120 | 7900 | 0.0642 | 1.9063 | 0.7430 | - | | 9.2275 | 8000 | 0.0596 | 1.8492 | 0.7468 | - | | 9.3430 | 8100 | 0.0479 | 1.8180 | 0.7517 | - | | 9.4584 | 8200 | 0.0561 | 1.8122 | 0.7468 | - | | 9.5739 | 8300 | 0.0311 | 1.8528 | 0.7456 | - | | 9.6894 | 8400 | 0.0069 | 1.8778 | 0.7447 | - | | 9.8048 | 8500 | 0.0027 | 1.8989 | 0.7423 | - | | 9.9203 | 8600 | 0.0093 | 1.9089 | 0.7423 | - | | 9.9896 | 8660 | - | - | - | 0.7503 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.3.1 - Transformers: 4.46.3 - PyTorch: 2.3.0 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```