mertyazan commited on
Commit
fee85d3
1 Parent(s): 469ac16

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2178.18 +/- 34.30
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1588aeff3612c618566f057022d6b1ea1fd3702e15c423f2580ff002364cca2
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45f3214e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45f3214ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45f3214f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45f319b040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f45f319b0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f45f319b160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f45f319b1f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45f319b280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f45f319b310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45f319b3a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45f319b430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45f319b4c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f45f3212990>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678044498316648137,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB2S1r5LMxHA52AOwAXofr/1LFI8Z64qv+Pr8z6u1ya/AfgRP87nkr99czA/cz0Cv2Bxtb4bgxg/gHD/PabscT9wtKc/k9hBvTNEFz+/D7+8mRo3QBn48b+9LIY/N/7QP2yegD/ozwA/In8QP3T1iL/X9v4+IAPQPmIT5j5FOOW+UwIxv566Aj8maeg97d4rQGnBFD+icNK8xT/KPbwylb/cx7Y/3hhEQCQn+7+nQ7I/JZUQPwog9T/BgxQ/YZmdPA3bNL8/Wmw+iWyovkIZaz9snoA/z2L+vwPG4r8iQW8/4MXIPnj6g7+u+fw99ds8PtIzDr88EEo/yfGnPvuDkr81zQs/vd/EvzKv9T71MaA+WcaaPo7INj773qI+pUC3Pwxrpz+mcgy9nN8UP1kO+jrb4ju/sjvyv4K2FT8TYJg+rsR+v+jPAD8DxuK/IkFvP7sLNL/+hTi/1IOrPgpeML9l8QI/1SSnPzla1rturdu+T1EVP1en7bsE+Sk9WpZTP7p4KT+V10A/TvJlP8VFVr6n4mM/iK3iP1uEFD9pHHU8RZPWPBw7sj4OyAo+2arIPWyegD/ozwA/In8QPyJBbz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB0c5c2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQHDNvQAAAAD4d9y/AAAAAIaAjr0AAAAA8k/qPwAAAABUHvA9AAAAAIRG7T8AAAAAyu48vQAAAAAp0Pu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNn1UD0AAAAAN3fwvwAAAABTM5w9AAAAAMFh6z8AAAAA5pYPPgAAAADmLOo/AAAAAJ1fzb0AAAAAKIj4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC25LjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAeb8g7AAAAAMsDAMAAAAAAoN6MPQAAAAC4Jfc/AAAAAFQ6rbwAAAAAoLjbPwAAAAAFqI+9AAAAADSn7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/3Qw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu18CvQAAAAA2hfK/AAAAAHgSED4AAAAAhpXbPwAAAAD7IZy8AAAAAIG7/D8AAAAAuUONPQAAAAD5Cu6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ+qJsenyd6MAWyUTegDjAF0lEdAruDjxTbWVnV9lChoBkdAnajIdELH/GgHTegDaAhHQK7j5k8zQ/p1fZQoaAZHQJvDFKf4AS5oB03oA2gIR0Cu7AlSsKb8dX2UKGgGR0CfxcC2+fyxaAdN6ANoCEdAru51iQT24HV9lChoBkdAnV+YP07KaGgHTegDaAhHQK7wjmFrVON1fZQoaAZHQJ7extdiUgVoB03oA2gIR0Cu9Xf+CK77dX2UKGgGR0CgfVuNPxhEaAdN6ANoCEdArv3568g6l3V9lChoBkdAoM+v+0gKW2gHTegDaAhHQK7/epPykKx1fZQoaAZHQKB0O7eVLSNoB03oA2gIR0CvAMmyPdVOdX2UKGgGR0CgglSsS00FaAdN6ANoCEdArwO7WRRuTHV9lChoBkdAoGFJG8VYZGgHTegDaAhHQK8MTTUAks11fZQoaAZHQJ/RLaXa8HxoB03oA2gIR0CvDryv9tMxdX2UKGgGR0CgFOSGahHtaAdN6ANoCEdArxEHP5YYBXV9lChoBkdAn8ZrRSgoPWgHTegDaAhHQK8WLphWo3t1fZQoaAZHQJ7elKraM75oB03oA2gIR0CvHgbuDzy0dX2UKGgGR0CgWVBUipvQaAdN6ANoCEdArx+NzKcNIHV9lChoBkdAnylFVHWjGmgHTegDaAhHQK8g4btqpLp1fZQoaAZHQJ+DY/LTx5NoB03oA2gIR0CvI8yAH3UQdX2UKGgGR0CgboOX/o7naAdN6ANoCEdAryzd0V8CxXV9lChoBkdAoFtujTKDCmgHTegDaAhHQK8vWDSPU8V1fZQoaAZHQJ7shda+vhZoB03oA2gIR0CvMaCyprDZdX2UKGgGR0CgRnw2VE/jaAdN6ANoCEdArzZT2JzkqHV9lChoBkdAoOBh9y925mgHTegDaAhHQK8+WA7Pppx1fZQoaAZHQKDm5ENOM2poB03oA2gIR0CvP/YYR/VidX2UKGgGR0Cg/zcYIjW1aAdN6ANoCEdAr0FY/mknC3V9lChoBkdAoKOJPsRg7mgHTegDaAhHQK9EaSV4X411fZQoaAZHQKD9uNAC4jNoB03oA2gIR0CvTdkhRqGldX2UKGgGR0Cfgecxj8UFaAdN6ANoCEdAr1B3FBIFvHV9lChoBkdAn2vIecQRPGgHTegDaAhHQK9SrRjz7Mx1fZQoaAZHQKGaPEjxCppoB03oA2gIR0CvVrfvv0AcdX2UKGgGR0CgA0TwtrbhaAdN6ANoCEdAr18NYnv2G3V9lChoBkdAnviuhbnoxGgHTegDaAhHQK9gr1xsEaF1fZQoaAZHQKBb9NorWiFoB03oA2gIR0CvYgvy9VWCdX2UKGgGR0CeO58QqZtvaAdN6ANoCEdAr2UqMPz4DnV9lChoBkdAoHm7neSB9WgHTegDaAhHQK9v5YUWVNZ1fZQoaAZHQJ+LF+WnjyZoB03oA2gIR0Cvcqz+m3vydX2UKGgGR0CfiOiLVFx5aAdN6ANoCEdAr3TqpHZsbnV9lChoBkdAnfhJUcXFcmgHTegDaAhHQK9366nR9gF1fZQoaAZHQKBp+482aUloB03oA2gIR0CvgCNjCpFTdX2UKGgGR0CglBX5vcagaAdN6ANoCEdAr4GmstCiRHV9lChoBkdAoNBHFJg9eWgHTegDaAhHQK+DB7TDwYt1fZQoaAZHQKB2XPDYRNBoB03oA2gIR0CvhgvMKTjedX2UKGgGR0Cf9kIEKVpsaAdN6ANoCEdAr5IFD8cdYHV9lChoBkdAoQIhWPtD2WgHTegDaAhHQK+UhOoo/iZ1fZQoaAZHQKCddqu8sc1oB03oA2gIR0CvleqBun/DdX2UKGgGR0Cg18P7N0NjaAdN6ANoCEdAr5kaZKFqSHV9lChoBkdAoOfKzzErG2gHTegDaAhHQK+hDkupS751fZQoaAZHQKGOc8W9DhNoB03oA2gIR0CvopI4VARkdX2UKGgGR0Cg/+UtRNypaAdN6ANoCEdAr6Pw2dd3S3V9lChoBkdAoTHth3JPqWgHTegDaAhHQK+m98IAwPB1fZQoaAZHQKFmKI1tO21oB03oA2gIR0Cvsy256MR6dX2UKGgGR0CgrwHJLdvbaAdN6ANoCEdAr7Tx4jbBXXV9lChoBkdAoEXvBUJfIGgHTegDaAhHQK+2bha1Tit1fZQoaAZHQKDk7sByS3doB03oA2gIR0CvuXL8rI5pdX2UKGgGR0CgVizkIX0oaAdN6ANoCEdAr8FtwiqyW3V9lChoBkdAnWmtWZJCjWgHTegDaAhHQK/DFPO6d2B1fZQoaAZHQJ+Z64x1xKhoB03oA2gIR0CvxI7Nr0rcdX2UKGgGR0CcA8ltj0+UaAdN6ANoCEdAr8fywW3z+XV9lChoBkdAn6HgSvkilmgHTegDaAhHQK/UJy7PIGR1fZQoaAZHQKDb4ZvUBn1oB03oA2gIR0Cv1c56lchUdX2UKGgGR0ChMAbKaG5+aAdN6ANoCEdAr9ctZ5iVjnV9lChoBkdAnsX+DaoMrmgHTegDaAhHQK/aK4//vOR1fZQoaAZHQKBAfL9uP3loB03oA2gIR0Cv4jWC2+fzdX2UKGgGR0CbcWQD3dsSaAdN6ANoCEdAr+PUmdAgPnV9lChoBkdAn1aeH31zyWgHTegDaAhHQK/lMyj59E11fZQoaAZHQJ9Sm5nUUfxoB03oA2gIR0Cv6QJH7P6bdX2UKGgGR0CgBBMNUfgaaAdN6ANoCEdAr/TQYpDu0HV9lChoBkdAnC3P8/D+BGgHTegDaAhHQK/2a3XI2fl1fZQoaAZHQJ7sf0SRKYloB03oA2gIR0Cv99jIq9XcdX2UKGgGR0Cet6fhddE9aAdN6ANoCEdAr/ryv3ai9XV9lChoBkdAnxDYISlFdGgHTegDaAhHQLABkpiZv1l1fZQoaAZHQKBPrRUFSsNoB03oA2gIR0CwAmkKeCkHdX2UKGgGR0CgMNiaZx7zaAdN6ANoCEdAsAMjKuB+WnV9lChoBkdAn+rdwFTvRmgHTegDaAhHQLAFdx5LRKJ1fZQoaAZHQJ0Qi7tiQT5oB03oA2gIR0CwCrPe+Eh8dX2UKGgGR0CdkvuNgjQiaAdN6ANoCEdAsAt5khA4XHV9lChoBkdAmm2jo2XLNmgHTegDaAhHQLAMKP6KtPp1fZQoaAZHQJ0P455qubJoB03oA2gIR0CwDax1DBuXdX2UKGgGR0Cewt6jFhoeaAdN6ANoCEdAsBGxwQ176nV9lChoBkdAnqzvViF0xWgHTegDaAhHQLASecTakAR1fZQoaAZHQJ9xqsOoYN1oB03oA2gIR0CwE4Ttb9qDdX2UKGgGR0Cgo4AWac7RaAdN6ANoCEdAsBXwBbOeKHV9lChoBkdAn88FHFxXGWgHTegDaAhHQLAaxoKUmlZ1fZQoaAZHQJ03wrCm/FloB03oA2gIR0CwG46PsAvMdX2UKGgGR0Ce3YooNNJwaAdN6ANoCEdAsBw7qqwQlXV9lChoBkdAnifaKHfuTmgHTegDaAhHQLAds2mpEQZ1fZQoaAZHQJ5xwsiB5HFoB03oA2gIR0CwIcJ/b0vodX2UKGgGR0CclTW9US7HaAdN6ANoCEdAsCLIR8MNMHV9lChoBkdAn5SeKbayr2gHTegDaAhHQLAj1TKT0QN1fZQoaAZHQJ+QuBClabFoB03oA2gIR0CwJlP9pAUtdX2UKGgGR0CgfcRL0z0paAdN6ANoCEdAsCrxtALRbHV9lChoBkdAoACF9ORDC2gHTegDaAhHQLArvSk0rLB1fZQoaAZHQKADOvi97F9oB03oA2gIR0CwLHPAO8TSdX2UKGgGR0CYr4F6Rhc8aAdN6ANoCEdAsC36vdM0xnV9lChoBkdAnyHkn9ehPGgHTegDaAhHQLAyFTzND+l1fZQoaAZHQKBwgHsTnJVoB03oA2gIR0CwM0qufVZtdX2UKGgGR0CgTreERJ2/aAdN6ANoCEdAsDRcJVsDXHV9lChoBkdAoAS3VqesgmgHTegDaAhHQLA26NHYpUh1fZQoaAZHQKARoBOHnEFoB03oA2gIR0CwOxRJd0JXdX2UKGgGR0ChB97g88s+aAdN6ANoCEdAsDvgGB4D93VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57eebcc21fa4e0e9d03b2c138e9509beb3774159a9330de90ec4ea1b197b2c53
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b31edcac904f754595c8d9a6c76875049153b26cae537039069ed1faff56828d
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45f3214e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45f3214ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45f3214f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45f319b040>", "_build": "<function ActorCriticPolicy._build at 0x7f45f319b0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f45f319b160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f45f319b1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45f319b280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45f319b310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45f319b3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45f319b430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45f319b4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45f3212990>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678044498316648137, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB2S1r5LMxHA52AOwAXofr/1LFI8Z64qv+Pr8z6u1ya/AfgRP87nkr99czA/cz0Cv2Bxtb4bgxg/gHD/PabscT9wtKc/k9hBvTNEFz+/D7+8mRo3QBn48b+9LIY/N/7QP2yegD/ozwA/In8QP3T1iL/X9v4+IAPQPmIT5j5FOOW+UwIxv566Aj8maeg97d4rQGnBFD+icNK8xT/KPbwylb/cx7Y/3hhEQCQn+7+nQ7I/JZUQPwog9T/BgxQ/YZmdPA3bNL8/Wmw+iWyovkIZaz9snoA/z2L+vwPG4r8iQW8/4MXIPnj6g7+u+fw99ds8PtIzDr88EEo/yfGnPvuDkr81zQs/vd/EvzKv9T71MaA+WcaaPo7INj773qI+pUC3Pwxrpz+mcgy9nN8UP1kO+jrb4ju/sjvyv4K2FT8TYJg+rsR+v+jPAD8DxuK/IkFvP7sLNL/+hTi/1IOrPgpeML9l8QI/1SSnPzla1rturdu+T1EVP1en7bsE+Sk9WpZTP7p4KT+V10A/TvJlP8VFVr6n4mM/iK3iP1uEFD9pHHU8RZPWPBw7sj4OyAo+2arIPWyegD/ozwA/In8QPyJBbz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB0c5c2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQHDNvQAAAAD4d9y/AAAAAIaAjr0AAAAA8k/qPwAAAABUHvA9AAAAAIRG7T8AAAAAyu48vQAAAAAp0Pu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNn1UD0AAAAAN3fwvwAAAABTM5w9AAAAAMFh6z8AAAAA5pYPPgAAAADmLOo/AAAAAJ1fzb0AAAAAKIj4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC25LjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAeb8g7AAAAAMsDAMAAAAAAoN6MPQAAAAC4Jfc/AAAAAFQ6rbwAAAAAoLjbPwAAAAAFqI+9AAAAADSn7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/3Qw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu18CvQAAAAA2hfK/AAAAAHgSED4AAAAAhpXbPwAAAAD7IZy8AAAAAIG7/D8AAAAAuUONPQAAAAD5Cu6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ+qJsenyd6MAWyUTegDjAF0lEdAruDjxTbWVnV9lChoBkdAnajIdELH/GgHTegDaAhHQK7j5k8zQ/p1fZQoaAZHQJvDFKf4AS5oB03oA2gIR0Cu7AlSsKb8dX2UKGgGR0CfxcC2+fyxaAdN6ANoCEdAru51iQT24HV9lChoBkdAnV+YP07KaGgHTegDaAhHQK7wjmFrVON1fZQoaAZHQJ7extdiUgVoB03oA2gIR0Cu9Xf+CK77dX2UKGgGR0CgfVuNPxhEaAdN6ANoCEdArv3568g6l3V9lChoBkdAoM+v+0gKW2gHTegDaAhHQK7/epPykKx1fZQoaAZHQKB0O7eVLSNoB03oA2gIR0CvAMmyPdVOdX2UKGgGR0CgglSsS00FaAdN6ANoCEdArwO7WRRuTHV9lChoBkdAoGFJG8VYZGgHTegDaAhHQK8MTTUAks11fZQoaAZHQJ/RLaXa8HxoB03oA2gIR0CvDryv9tMxdX2UKGgGR0CgFOSGahHtaAdN6ANoCEdArxEHP5YYBXV9lChoBkdAn8ZrRSgoPWgHTegDaAhHQK8WLphWo3t1fZQoaAZHQJ7elKraM75oB03oA2gIR0CvHgbuDzy0dX2UKGgGR0CgWVBUipvQaAdN6ANoCEdArx+NzKcNIHV9lChoBkdAnylFVHWjGmgHTegDaAhHQK8g4btqpLp1fZQoaAZHQJ+DY/LTx5NoB03oA2gIR0CvI8yAH3UQdX2UKGgGR0CgboOX/o7naAdN6ANoCEdAryzd0V8CxXV9lChoBkdAoFtujTKDCmgHTegDaAhHQK8vWDSPU8V1fZQoaAZHQJ7shda+vhZoB03oA2gIR0CvMaCyprDZdX2UKGgGR0CgRnw2VE/jaAdN6ANoCEdArzZT2JzkqHV9lChoBkdAoOBh9y925mgHTegDaAhHQK8+WA7Pppx1fZQoaAZHQKDm5ENOM2poB03oA2gIR0CvP/YYR/VidX2UKGgGR0Cg/zcYIjW1aAdN6ANoCEdAr0FY/mknC3V9lChoBkdAoKOJPsRg7mgHTegDaAhHQK9EaSV4X411fZQoaAZHQKD9uNAC4jNoB03oA2gIR0CvTdkhRqGldX2UKGgGR0Cfgecxj8UFaAdN6ANoCEdAr1B3FBIFvHV9lChoBkdAn2vIecQRPGgHTegDaAhHQK9SrRjz7Mx1fZQoaAZHQKGaPEjxCppoB03oA2gIR0CvVrfvv0AcdX2UKGgGR0CgA0TwtrbhaAdN6ANoCEdAr18NYnv2G3V9lChoBkdAnviuhbnoxGgHTegDaAhHQK9gr1xsEaF1fZQoaAZHQKBb9NorWiFoB03oA2gIR0CvYgvy9VWCdX2UKGgGR0CeO58QqZtvaAdN6ANoCEdAr2UqMPz4DnV9lChoBkdAoHm7neSB9WgHTegDaAhHQK9v5YUWVNZ1fZQoaAZHQJ+LF+WnjyZoB03oA2gIR0Cvcqz+m3vydX2UKGgGR0CfiOiLVFx5aAdN6ANoCEdAr3TqpHZsbnV9lChoBkdAnfhJUcXFcmgHTegDaAhHQK9366nR9gF1fZQoaAZHQKBp+482aUloB03oA2gIR0CvgCNjCpFTdX2UKGgGR0CglBX5vcagaAdN6ANoCEdAr4GmstCiRHV9lChoBkdAoNBHFJg9eWgHTegDaAhHQK+DB7TDwYt1fZQoaAZHQKB2XPDYRNBoB03oA2gIR0CvhgvMKTjedX2UKGgGR0Cf9kIEKVpsaAdN6ANoCEdAr5IFD8cdYHV9lChoBkdAoQIhWPtD2WgHTegDaAhHQK+UhOoo/iZ1fZQoaAZHQKCddqu8sc1oB03oA2gIR0CvleqBun/DdX2UKGgGR0Cg18P7N0NjaAdN6ANoCEdAr5kaZKFqSHV9lChoBkdAoOfKzzErG2gHTegDaAhHQK+hDkupS751fZQoaAZHQKGOc8W9DhNoB03oA2gIR0CvopI4VARkdX2UKGgGR0Cg/+UtRNypaAdN6ANoCEdAr6Pw2dd3S3V9lChoBkdAoTHth3JPqWgHTegDaAhHQK+m98IAwPB1fZQoaAZHQKFmKI1tO21oB03oA2gIR0Cvsy256MR6dX2UKGgGR0CgrwHJLdvbaAdN6ANoCEdAr7Tx4jbBXXV9lChoBkdAoEXvBUJfIGgHTegDaAhHQK+2bha1Tit1fZQoaAZHQKDk7sByS3doB03oA2gIR0CvuXL8rI5pdX2UKGgGR0CgVizkIX0oaAdN6ANoCEdAr8FtwiqyW3V9lChoBkdAnWmtWZJCjWgHTegDaAhHQK/DFPO6d2B1fZQoaAZHQJ+Z64x1xKhoB03oA2gIR0CvxI7Nr0rcdX2UKGgGR0CcA8ltj0+UaAdN6ANoCEdAr8fywW3z+XV9lChoBkdAn6HgSvkilmgHTegDaAhHQK/UJy7PIGR1fZQoaAZHQKDb4ZvUBn1oB03oA2gIR0Cv1c56lchUdX2UKGgGR0ChMAbKaG5+aAdN6ANoCEdAr9ctZ5iVjnV9lChoBkdAnsX+DaoMrmgHTegDaAhHQK/aK4//vOR1fZQoaAZHQKBAfL9uP3loB03oA2gIR0Cv4jWC2+fzdX2UKGgGR0CbcWQD3dsSaAdN6ANoCEdAr+PUmdAgPnV9lChoBkdAn1aeH31zyWgHTegDaAhHQK/lMyj59E11fZQoaAZHQJ9Sm5nUUfxoB03oA2gIR0Cv6QJH7P6bdX2UKGgGR0CgBBMNUfgaaAdN6ANoCEdAr/TQYpDu0HV9lChoBkdAnC3P8/D+BGgHTegDaAhHQK/2a3XI2fl1fZQoaAZHQJ7sf0SRKYloB03oA2gIR0Cv99jIq9XcdX2UKGgGR0Cet6fhddE9aAdN6ANoCEdAr/ryv3ai9XV9lChoBkdAnxDYISlFdGgHTegDaAhHQLABkpiZv1l1fZQoaAZHQKBPrRUFSsNoB03oA2gIR0CwAmkKeCkHdX2UKGgGR0CgMNiaZx7zaAdN6ANoCEdAsAMjKuB+WnV9lChoBkdAn+rdwFTvRmgHTegDaAhHQLAFdx5LRKJ1fZQoaAZHQJ0Qi7tiQT5oB03oA2gIR0CwCrPe+Eh8dX2UKGgGR0CdkvuNgjQiaAdN6ANoCEdAsAt5khA4XHV9lChoBkdAmm2jo2XLNmgHTegDaAhHQLAMKP6KtPp1fZQoaAZHQJ0P455qubJoB03oA2gIR0CwDax1DBuXdX2UKGgGR0Cewt6jFhoeaAdN6ANoCEdAsBGxwQ176nV9lChoBkdAnqzvViF0xWgHTegDaAhHQLASecTakAR1fZQoaAZHQJ9xqsOoYN1oB03oA2gIR0CwE4Ttb9qDdX2UKGgGR0Cgo4AWac7RaAdN6ANoCEdAsBXwBbOeKHV9lChoBkdAn88FHFxXGWgHTegDaAhHQLAaxoKUmlZ1fZQoaAZHQJ03wrCm/FloB03oA2gIR0CwG46PsAvMdX2UKGgGR0Ce3YooNNJwaAdN6ANoCEdAsBw7qqwQlXV9lChoBkdAnifaKHfuTmgHTegDaAhHQLAds2mpEQZ1fZQoaAZHQJ5xwsiB5HFoB03oA2gIR0CwIcJ/b0vodX2UKGgGR0CclTW9US7HaAdN6ANoCEdAsCLIR8MNMHV9lChoBkdAn5SeKbayr2gHTegDaAhHQLAj1TKT0QN1fZQoaAZHQJ+QuBClabFoB03oA2gIR0CwJlP9pAUtdX2UKGgGR0CgfcRL0z0paAdN6ANoCEdAsCrxtALRbHV9lChoBkdAoACF9ORDC2gHTegDaAhHQLArvSk0rLB1fZQoaAZHQKADOvi97F9oB03oA2gIR0CwLHPAO8TSdX2UKGgGR0CYr4F6Rhc8aAdN6ANoCEdAsC36vdM0xnV9lChoBkdAnyHkn9ehPGgHTegDaAhHQLAyFTzND+l1fZQoaAZHQKBwgHsTnJVoB03oA2gIR0CwM0qufVZtdX2UKGgGR0CgTreERJ2/aAdN6ANoCEdAsDRcJVsDXHV9lChoBkdAoAS3VqesgmgHTegDaAhHQLA26NHYpUh1fZQoaAZHQKARoBOHnEFoB03oA2gIR0CwOxRJd0JXdX2UKGgGR0ChB97g88s+aAdN6ANoCEdAsDvgGB4D93VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8eeac353194158022f85bb94c7dd00f4b8ee2141c99ccc3c77cf3cd18a82f97
3
+ size 1095892
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2178.1825228816365, "std_reward": 34.29559970323376, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T20:47:30.801841"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5878837f7dbdffa732b7885cd8f34830207002193e9b614525531fd31321ce4e
3
+ size 2136