small but mighty π₯ you can fine-tune SmolVLM on an L4 with batch size of 4 and it will only take 16.4 GB VRAM π«°π» also with gradient accumulation simulated batch size is 16 β¨ I made a notebook that includes all the goodies: QLoRA, gradient accumulation, gradient checkpointing with explanations on how they work π https://github.com/huggingface/smollm/blob/main/finetuning/Smol_VLM_FT.ipynb
πΌοΈ Multimodal > At Hugging Face we released SmolVLM, a performant and efficient smol vision language model π > Show Lab released ShowUI-2B: new vision-language-action model to build GUI/web automation agents π€ > Rhymes AI has released the base model of Aria: Aria-Base-64K and Aria-Base-8K with their respective context length > ViDoRe team released ColSmolVLM: A new ColPali-like retrieval model based on SmolVLM > Dataset: Llava-CoT-o1-Instruct: new dataset labelled using Llava-CoT multimodal reasoning modelπ > Dataset: LLaVA-CoT-100k dataset used to train Llava-CoT released by creators of Llava-CoT π
π¬ LLMs > Qwen team released QwQ-32B-Preview, state-of-the-art open-source reasoning model, broke the internet π₯ > AliBaba has released Marco-o1, a new open-source reasoning model π₯ > NVIDIA released Hymba 1.5B Base and Instruct, the new state-of-the-art SLMs with hybrid architecture (Mamba + transformer)
β―οΈ Image/Video Generation > Qwen2VL-Flux: new image generation model based on Qwen2VL image encoder, T5 and Flux for generation > Lightricks released LTX-Video, a new DiT-based video generation model that can generate 24 FPS videos at 768x512 res β―οΈ > Dataset: Image Preferences is a new image generation preference dataset made with DIBT community effort of Argilla π·οΈ
Audio > OuteAI released OuteTTS-0.2-500M new multilingual text-to-speech model based on Qwen-2.5-0.5B trained on 5B audio prompt tokens