---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
widget:
structuredData:
attribute_0:
- material_7
- material_7
- material_7
attribute_1:
- material_8
- material_8
- material_6
attribute_2:
- 5
- 5
- 6
attribute_3:
- 8
- 8
- 9
loading:
- 154.02
- 108.73
- 99.84
measurement_0:
- 14
- 4
- 6
measurement_1:
- 6
- 7
- 7
measurement_10:
- 16.637
- 16.207
- 17.17
measurement_11:
- 20.719
- 20.058
- 20.858
measurement_12:
- 12.824
- 11.898
- 10.968
measurement_13:
- 16.067
- 13.871
- 16.448
measurement_14:
- 15.181
- 14.266
- 15.6
measurement_15:
- 18.546
- 15.734
- 14.637
measurement_16:
- 19.402
- 16.886
- 13.86
measurement_17:
- 643.086
- 642.533
- 673.545
measurement_2:
- 6
- 9
- 6
measurement_3:
- 19.532
- 18.128
- NaN
measurement_4:
- 11.017
- 11.866
- 10.064
measurement_5:
- 15.639
- 17.891
- 16.287
measurement_6:
- 16.709
- 20.302
- 17.445
measurement_7:
- 10.057
- NaN
- 12.117
measurement_8:
- 20.201
- 18.148
- 20.659
measurement_9:
- 11.106
- 10.221
- 11.999
product_code:
- C
- C
- E
---
# Model description
This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset.
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] |
| verbose | False |
| transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),
'attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])]) |
| model | DecisionTreeClassifier(max_depth=4) |
| transformation__n_jobs | |
| transformation__remainder | drop |
| transformation__sparse_threshold | 0.3 |
| transformation__transformer_weights | |
| transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(),['product_code'])]
|
| transformation__verbose | False |
| transformation__verbose_feature_names_out | True |
| transformation__loading_missing_value_imputer | SimpleImputer() |
| transformation__numerical_missing_value_imputer | SimpleImputer() |
| transformation__attribute_0_encoder | OneHotEncoder() |
| transformation__attribute_1_encoder | OneHotEncoder() |
| transformation__product_code_encoder | OneHotEncoder() |
| transformation__loading_missing_value_imputer__add_indicator | False |
| transformation__loading_missing_value_imputer__copy | True |
| transformation__loading_missing_value_imputer__fill_value | |
| transformation__loading_missing_value_imputer__missing_values | nan |
| transformation__loading_missing_value_imputer__strategy | mean |
| transformation__loading_missing_value_imputer__verbose | 0 |
| transformation__numerical_missing_value_imputer__add_indicator | False |
| transformation__numerical_missing_value_imputer__copy | True |
| transformation__numerical_missing_value_imputer__fill_value | |
| transformation__numerical_missing_value_imputer__missing_values | nan |
| transformation__numerical_missing_value_imputer__strategy | mean |
| transformation__numerical_missing_value_imputer__verbose | 0 |
| transformation__attribute_0_encoder__categories | auto |
| transformation__attribute_0_encoder__drop | |
| transformation__attribute_0_encoder__dtype |
Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])
ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])
['loading']
SimpleImputer()
['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']
SimpleImputer()
['attribute_0']
OneHotEncoder()
['attribute_1']
OneHotEncoder()
['product_code']
OneHotEncoder()
DecisionTreeClassifier(max_depth=4)