File size: 17,752 Bytes
89650c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#include <ATen/cuda/CUDAContext.h>
#include <THC/THCAtomics.cuh>

#include "util.cuh"
#include "operator.cuh"
#include "rspmm.h"

namespace at {

// Memory & time efficient implementation of generalized spmm
// Much of the code is inspired by GE-SpMM
// https://github.com/hgyhungry/ge-spmm

namespace {

const int kCoarseningFactor = 2;
const int kThreadPerBlock = 256;

} // namespace anonymous

template <class scalar_t, class NaryOp, class BinaryOp>
__global__
void rspmm_forward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
                            const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
                            scalar_t *output,
                            int64_t num_row, int64_t nnz, int64_t dim) {
    // for best optimization, the following code is compiled with constant warpSize
    assert(blockDim.x == warpSize);

    extern __shared__ int64_t buffer[];
    int64_t *col_ind_buf = buffer;
    int64_t *layer_ind_buf = buffer + blockDim.y * warpSize;
    scalar_t *weight_buf = reinterpret_cast<scalar_t *>(layer_ind_buf + blockDim.y * warpSize);
    col_ind_buf += threadIdx.y * warpSize;
    layer_ind_buf += threadIdx.y * warpSize;
    weight_buf += threadIdx.y * warpSize;

    int64_t row = blockIdx.x * blockDim.y + threadIdx.y;
    if (row >= num_row)
        return;
    int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x;
    int64_t ptr_start = row_ptr[row];
    int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;
    scalar_t out[kCoarseningFactor];
#pragma unroll
    for (int64_t i = 0; i < kCoarseningFactor; i++)
        out[i] = NaryOp::zero;

    for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) {
        int64_t ptr = block_ptr + threadIdx.x;
        if (ptr < ptr_end) {
            col_ind_buf[threadIdx.x] = col_ind[ptr];
            layer_ind_buf[threadIdx.x] = layer_ind[ptr];
            weight_buf[threadIdx.x] = weight[ptr];
        }
        __syncwarp();

        int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr;
        for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) {
            int64_t col = col_ind_buf[offset_ptr];
            int64_t layer = layer_ind_buf[offset_ptr];
            scalar_t w = weight_buf[offset_ptr];
#pragma unroll
            for (int64_t i = 0; i < kCoarseningFactor; i++) {
                int64_t d = d_start + i * warpSize;
                if (d >= dim)
                    break;
                scalar_t x = BinaryOp::forward(relation[layer * dim + d], input[col * dim + d]);
                scalar_t y = w * x;
                out[i] = NaryOp::forward(out[i], y);
            }
        }
        __syncwarp();
    }

#pragma unroll
    for (int64_t i = 0; i < kCoarseningFactor; i++) {
        int64_t d = d_start + i * warpSize;
        if (d >= dim)
            break;
        output[row * dim + d] = out[i];
    }
}

template <class scalar_t, class NaryOp, class BinaryOp>
__global__
void rspmm_backward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
                             const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
                             const scalar_t *output, const scalar_t *output_grad,
                             scalar_t *weight_grad, scalar_t *relation_grad, scalar_t *input_grad,
                             int64_t num_row, int64_t nnz, int64_t dim) {
    // for best optimization, the following code is compiled with constant warpSize
    assert(blockDim.x == warpSize);

    extern __shared__ int64_t buffer[];
    int64_t *col_ind_buf = buffer;
    int64_t *layer_ind_buf = col_ind_buf + blockDim.y * warpSize;
    scalar_t *weight_buf = reinterpret_cast<scalar_t *>(layer_ind_buf + blockDim.y * warpSize);
    col_ind_buf += threadIdx.y * warpSize;
    layer_ind_buf += threadIdx.y * warpSize;
    weight_buf += threadIdx.y * warpSize;

    int64_t row = blockIdx.x * blockDim.y + threadIdx.y;
    if (row >= num_row)
        return;
    int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x;
    int64_t ptr_start = row_ptr[row];
    int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;

    for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) {
        int64_t ptr = block_ptr + threadIdx.x;
        if (ptr < ptr_end) {
            col_ind_buf[threadIdx.x] = col_ind[ptr];
            layer_ind_buf[threadIdx.x] = layer_ind[ptr];
            weight_buf[threadIdx.x] = weight[ptr];
        }
        __syncwarp();

        int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr;
        for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) {
            int64_t col = col_ind_buf[offset_ptr];
            int64_t layer = layer_ind_buf[offset_ptr];
            scalar_t w = weight_buf[offset_ptr];
            scalar_t w_grad = 0;
#pragma unroll
            for (int64_t i = 0; i < kCoarseningFactor; i++) {
                int64_t d = d_start + i * warpSize;
                if (d >= dim)
                    break;
                scalar_t rel = relation[layer * dim + d];
                scalar_t in = input[col * dim + d];
                scalar_t out = output[row * dim + d];
                scalar_t out_grad = output_grad[row * dim + d];
                scalar_t x = BinaryOp::forward(rel, in);
                scalar_t y = w * x;
                scalar_t dx_drel = BinaryOp::backward_lhs(rel, in);
                scalar_t dx_din = BinaryOp::backward_rhs(rel, in);
                scalar_t dout_dy = NaryOp::backward(out, y);
                scalar_t dy_dw = x;
                scalar_t dy_dx = w;
                w_grad += out_grad * dout_dy * dy_dw;
                atomicAdd(&relation_grad[layer * dim + d], out_grad * dout_dy * dy_dx * dx_drel);
                atomicAdd(&input_grad[col * dim + d], out_grad * dout_dy * dy_dx * dx_din);
            }
            w_grad = warp_reduce(w_grad);
            if (threadIdx.x == 0)
                atomicAdd(&weight_grad[block_ptr + offset_ptr], w_grad);
        }
        __syncwarp();
    }
}

// only relation & input require gradients
template <class scalar_t, class NaryOp, class BinaryOp>
__global__
void rspmm_backward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
                             const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
                             const scalar_t *output, const scalar_t *output_grad,
                             scalar_t *relation_grad, scalar_t *input_grad,
                             int64_t num_row, int64_t nnz, int64_t dim) {
    // for best optimization, the following code is compiled with constant warpSize
    assert(blockDim.x == warpSize);

    extern __shared__ int64_t buffer[];
    int64_t *col_ind_buf = buffer;
    int64_t *layer_ind_buf = col_ind_buf + blockDim.y * warpSize;
    scalar_t *weight_buf = reinterpret_cast<scalar_t *>(layer_ind_buf + blockDim.y * warpSize);
    col_ind_buf += threadIdx.y * warpSize;
    layer_ind_buf += threadIdx.y * warpSize;
    weight_buf += threadIdx.y * warpSize;

    int64_t row = blockIdx.x * blockDim.y + threadIdx.y;
    if (row >= num_row)
        return;
    int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x;
    int64_t ptr_start = row_ptr[row];
    int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;

    for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) {
        int64_t ptr = block_ptr + threadIdx.x;
        if (ptr < ptr_end) {
            col_ind_buf[threadIdx.x] = col_ind[ptr];
            layer_ind_buf[threadIdx.x] = layer_ind[ptr];
            weight_buf[threadIdx.x] = weight[ptr];
        }
        __syncwarp();

        int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr;
        for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) {
            int64_t col = col_ind_buf[offset_ptr];
            int64_t layer = layer_ind_buf[offset_ptr];
            scalar_t w = weight_buf[offset_ptr];
#pragma unroll
            for (int64_t i = 0; i < kCoarseningFactor; i++) {
                int64_t d = d_start + i * warpSize;
                if (d >= dim)
                    break;
                scalar_t rel = relation[layer * dim + d];
                scalar_t in = input[col * dim + d];
                scalar_t out = output[row * dim + d];
                scalar_t out_grad = output_grad[row * dim + d];
                scalar_t x = BinaryOp::forward(rel, in);
                scalar_t y = w * x;
                scalar_t dx_drel = BinaryOp::backward_lhs(rel, in);
                scalar_t dx_din = BinaryOp::backward_rhs(rel, in);
                scalar_t dout_dy = NaryOp::backward(out, y);
                scalar_t dy_dx = w;
                atomicAdd(&relation_grad[layer * dim + d], out_grad * dout_dy * dy_dx * dx_drel);
                atomicAdd(&input_grad[col * dim + d], out_grad * dout_dy * dy_dx * dx_din);
            }
        }
        __syncwarp();
    }
}

template <template<class> class NaryOp, template<class> class BinaryOp>
Tensor rspmm_forward_cuda(const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_,
                          const Tensor &relation_, const Tensor &input_) {
    constexpr const char *fn_name = "rspmm_forward_cuda";
    TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2),
              edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4),
              input_arg(input_, "input", 5);

    rspmm_forward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg);
    checkAllSameGPU(fn_name, {edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg});

    const Tensor edge_index = edge_index_.contiguous();
    const Tensor edge_type = edge_type_.contiguous();
    const Tensor edge_weight = edge_weight_.contiguous();
    const Tensor relation = relation_.contiguous();
    const Tensor input = input_.contiguous();

    int64_t nnz = edge_index.size(0);
    int64_t num_row = input.size(0);
    int64_t dim = input.size(1);
    Tensor output = at::empty({num_row, dim}, input.options());

    Tensor row_ind = edge_index.select(0, 0);
    Tensor row_ptr = ind2ptr(row_ind, num_row);
    Tensor col_ind = edge_index.select(0, 1);
    Tensor layer_ind = edge_type;

    cudaSetDevice(input.get_device());
    auto stream = at::cuda::getCurrentCUDAStream();

    const int dim_per_block = 32; // warpSize
    const int num_dim_block = (dim + dim_per_block * kCoarseningFactor - 1) / (dim_per_block * kCoarseningFactor);
    const int row_per_block = kThreadPerBlock / dim_per_block;
    const int num_row_block = (num_row + row_per_block - 1) / row_per_block;

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_forward_cuda", [&] {
        const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t));
        rspmm_forward_out_cuda<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>
            <<<dim3(num_row_block, num_dim_block), dim3(dim_per_block, row_per_block), memory_size, stream>>>(
            row_ptr.data_ptr<int64_t>(),
            col_ind.data_ptr<int64_t>(),
            layer_ind.data_ptr<int64_t>(),
            edge_weight.data_ptr<scalar_t>(),
            relation.data_ptr<scalar_t>(),
            input.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            num_row, nnz, dim
        );
    });

    return output;
}

template <template<class> class NaryOp, template<class> class BinaryOp>
std::tuple<Tensor, Tensor, Tensor> rspmm_backward_cuda(
        const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_,
        const Tensor &relation_, const Tensor &input_, const Tensor &output_, const Tensor &output_grad_) {
    constexpr const char *fn_name = "rspmm_backward_cuda";
    TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2),
              edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4),
              input_arg(input_, "input", 5), output_arg(output_, "output", 6),
              output_grad_arg(output_grad_, "output_grad", 7);

    rspmm_backward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg,
                         output_arg, output_grad_arg);
    checkAllSameGPU(fn_name, {edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg, output_arg,
                              output_grad_arg});

    const Tensor edge_index = edge_index_.contiguous();
    const Tensor edge_type = edge_type_.contiguous();
    const Tensor edge_weight = edge_weight_.contiguous();
    const Tensor relation = relation_.contiguous();
    const Tensor input = input_.contiguous();
    const Tensor output = output_.contiguous();
    const Tensor output_grad = output_grad_.contiguous();

    int64_t nnz = edge_index.size(0);
    int64_t num_row = input.size(0);
    int64_t dim = input.size(1);
    Tensor weight_grad = at::zeros_like(edge_weight);
    Tensor relation_grad = at::zeros_like(relation);
    Tensor input_grad = at::zeros_like(input);

    Tensor row_ind = edge_index.select(0, 0);
    Tensor row_ptr = ind2ptr(row_ind, num_row);
    Tensor col_ind = edge_index.select(0, 1);
    Tensor layer_ind = edge_type;

    cudaSetDevice(input.get_device());
    auto stream = at::cuda::getCurrentCUDAStream();

    const int dim_per_block = 32; // warpSize
    const int num_dim_block = (dim + dim_per_block * kCoarseningFactor - 1) / (dim_per_block * kCoarseningFactor);
    const int row_per_block = kThreadPerBlock / dim_per_block;
    const int num_row_block = (num_row + row_per_block - 1) / row_per_block;

    if (edge_weight.requires_grad())
        AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cuda", [&] {
            const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t));
            rspmm_backward_out_cuda<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>
                <<<dim3(num_row_block, num_dim_block), dim3(dim_per_block, row_per_block), memory_size, stream>>>(
                row_ptr.data_ptr<int64_t>(),
                col_ind.data_ptr<int64_t>(),
                layer_ind.data_ptr<int64_t>(),
                edge_weight.data_ptr<scalar_t>(),
                relation.data_ptr<scalar_t>(),
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                output_grad.data_ptr<scalar_t>(),
                weight_grad.data_ptr<scalar_t>(),
                relation_grad.data_ptr<scalar_t>(),
                input_grad.data_ptr<scalar_t>(),
                num_row, nnz, dim
            );
        });
    else
        AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cuda", [&] {
            const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t));
            rspmm_backward_out_cuda<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>
                <<<dim3(num_row_block, num_dim_block), dim3(dim_per_block, row_per_block), memory_size, stream>>>(
                row_ptr.data_ptr<int64_t>(),
                col_ind.data_ptr<int64_t>(),
                layer_ind.data_ptr<int64_t>(),
                edge_weight.data_ptr<scalar_t>(),
                relation.data_ptr<scalar_t>(),
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                output_grad.data_ptr<scalar_t>(),
                relation_grad.data_ptr<scalar_t>(),
                input_grad.data_ptr<scalar_t>(),
                num_row, nnz, dim
            );
        });

    return std::make_tuple(weight_grad, relation_grad, input_grad);
}

#define DECLARE_FORWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \
    Tensor rspmm_##ADD##_##MUL##_forward_cuda(                                                            \
            const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight,                 \
            const Tensor &relation, const Tensor &input) {                                                \
        return rspmm_forward_cuda<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input); \
    }

#define DECLARE_BACKWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \
    std::tuple<Tensor, Tensor, Tensor> rspmm_##ADD##_##MUL##_backward_cuda(                                 \
            const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight,                   \
            const Tensor &relation, const Tensor &input, const Tensor &output, const Tensor &output_grad) { \
        return rspmm_backward_cuda<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input,   \
                                                     output, output_grad);                                  \
    }

DECLARE_FORWARD_IMPL(add, mul, NaryAdd, BinaryMul)
DECLARE_BACKWARD_IMPL(add, mul, NaryAdd, BinaryMul)

DECLARE_FORWARD_IMPL(min, mul, NaryMin, BinaryMul)
DECLARE_BACKWARD_IMPL(min, mul, NaryMin, BinaryMul)

DECLARE_FORWARD_IMPL(max, mul, NaryMax, BinaryMul)
DECLARE_BACKWARD_IMPL(max, mul, NaryMax, BinaryMul)

DECLARE_FORWARD_IMPL(add, add, NaryAdd, BinaryAdd)
DECLARE_BACKWARD_IMPL(add, add, NaryAdd, BinaryAdd)

DECLARE_FORWARD_IMPL(min, add, NaryMin, BinaryAdd)
DECLARE_BACKWARD_IMPL(min, add, NaryMin, BinaryAdd)

DECLARE_FORWARD_IMPL(max, add, NaryMax, BinaryAdd)
DECLARE_BACKWARD_IMPL(max, add, NaryMax, BinaryAdd)

} // namespace at