File size: 17,752 Bytes
89650c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
#include <ATen/cuda/CUDAContext.h>
#include <THC/THCAtomics.cuh>
#include "util.cuh"
#include "operator.cuh"
#include "rspmm.h"
namespace at {
// Memory & time efficient implementation of generalized spmm
// Much of the code is inspired by GE-SpMM
// https://github.com/hgyhungry/ge-spmm
namespace {
const int kCoarseningFactor = 2;
const int kThreadPerBlock = 256;
} // namespace anonymous
template <class scalar_t, class NaryOp, class BinaryOp>
__global__
void rspmm_forward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
scalar_t *output,
int64_t num_row, int64_t nnz, int64_t dim) {
// for best optimization, the following code is compiled with constant warpSize
assert(blockDim.x == warpSize);
extern __shared__ int64_t buffer[];
int64_t *col_ind_buf = buffer;
int64_t *layer_ind_buf = buffer + blockDim.y * warpSize;
scalar_t *weight_buf = reinterpret_cast<scalar_t *>(layer_ind_buf + blockDim.y * warpSize);
col_ind_buf += threadIdx.y * warpSize;
layer_ind_buf += threadIdx.y * warpSize;
weight_buf += threadIdx.y * warpSize;
int64_t row = blockIdx.x * blockDim.y + threadIdx.y;
if (row >= num_row)
return;
int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x;
int64_t ptr_start = row_ptr[row];
int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;
scalar_t out[kCoarseningFactor];
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++)
out[i] = NaryOp::zero;
for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) {
int64_t ptr = block_ptr + threadIdx.x;
if (ptr < ptr_end) {
col_ind_buf[threadIdx.x] = col_ind[ptr];
layer_ind_buf[threadIdx.x] = layer_ind[ptr];
weight_buf[threadIdx.x] = weight[ptr];
}
__syncwarp();
int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr;
for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) {
int64_t col = col_ind_buf[offset_ptr];
int64_t layer = layer_ind_buf[offset_ptr];
scalar_t w = weight_buf[offset_ptr];
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++) {
int64_t d = d_start + i * warpSize;
if (d >= dim)
break;
scalar_t x = BinaryOp::forward(relation[layer * dim + d], input[col * dim + d]);
scalar_t y = w * x;
out[i] = NaryOp::forward(out[i], y);
}
}
__syncwarp();
}
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++) {
int64_t d = d_start + i * warpSize;
if (d >= dim)
break;
output[row * dim + d] = out[i];
}
}
template <class scalar_t, class NaryOp, class BinaryOp>
__global__
void rspmm_backward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
const scalar_t *output, const scalar_t *output_grad,
scalar_t *weight_grad, scalar_t *relation_grad, scalar_t *input_grad,
int64_t num_row, int64_t nnz, int64_t dim) {
// for best optimization, the following code is compiled with constant warpSize
assert(blockDim.x == warpSize);
extern __shared__ int64_t buffer[];
int64_t *col_ind_buf = buffer;
int64_t *layer_ind_buf = col_ind_buf + blockDim.y * warpSize;
scalar_t *weight_buf = reinterpret_cast<scalar_t *>(layer_ind_buf + blockDim.y * warpSize);
col_ind_buf += threadIdx.y * warpSize;
layer_ind_buf += threadIdx.y * warpSize;
weight_buf += threadIdx.y * warpSize;
int64_t row = blockIdx.x * blockDim.y + threadIdx.y;
if (row >= num_row)
return;
int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x;
int64_t ptr_start = row_ptr[row];
int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;
for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) {
int64_t ptr = block_ptr + threadIdx.x;
if (ptr < ptr_end) {
col_ind_buf[threadIdx.x] = col_ind[ptr];
layer_ind_buf[threadIdx.x] = layer_ind[ptr];
weight_buf[threadIdx.x] = weight[ptr];
}
__syncwarp();
int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr;
for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) {
int64_t col = col_ind_buf[offset_ptr];
int64_t layer = layer_ind_buf[offset_ptr];
scalar_t w = weight_buf[offset_ptr];
scalar_t w_grad = 0;
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++) {
int64_t d = d_start + i * warpSize;
if (d >= dim)
break;
scalar_t rel = relation[layer * dim + d];
scalar_t in = input[col * dim + d];
scalar_t out = output[row * dim + d];
scalar_t out_grad = output_grad[row * dim + d];
scalar_t x = BinaryOp::forward(rel, in);
scalar_t y = w * x;
scalar_t dx_drel = BinaryOp::backward_lhs(rel, in);
scalar_t dx_din = BinaryOp::backward_rhs(rel, in);
scalar_t dout_dy = NaryOp::backward(out, y);
scalar_t dy_dw = x;
scalar_t dy_dx = w;
w_grad += out_grad * dout_dy * dy_dw;
atomicAdd(&relation_grad[layer * dim + d], out_grad * dout_dy * dy_dx * dx_drel);
atomicAdd(&input_grad[col * dim + d], out_grad * dout_dy * dy_dx * dx_din);
}
w_grad = warp_reduce(w_grad);
if (threadIdx.x == 0)
atomicAdd(&weight_grad[block_ptr + offset_ptr], w_grad);
}
__syncwarp();
}
}
// only relation & input require gradients
template <class scalar_t, class NaryOp, class BinaryOp>
__global__
void rspmm_backward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
const scalar_t *output, const scalar_t *output_grad,
scalar_t *relation_grad, scalar_t *input_grad,
int64_t num_row, int64_t nnz, int64_t dim) {
// for best optimization, the following code is compiled with constant warpSize
assert(blockDim.x == warpSize);
extern __shared__ int64_t buffer[];
int64_t *col_ind_buf = buffer;
int64_t *layer_ind_buf = col_ind_buf + blockDim.y * warpSize;
scalar_t *weight_buf = reinterpret_cast<scalar_t *>(layer_ind_buf + blockDim.y * warpSize);
col_ind_buf += threadIdx.y * warpSize;
layer_ind_buf += threadIdx.y * warpSize;
weight_buf += threadIdx.y * warpSize;
int64_t row = blockIdx.x * blockDim.y + threadIdx.y;
if (row >= num_row)
return;
int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x;
int64_t ptr_start = row_ptr[row];
int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;
for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) {
int64_t ptr = block_ptr + threadIdx.x;
if (ptr < ptr_end) {
col_ind_buf[threadIdx.x] = col_ind[ptr];
layer_ind_buf[threadIdx.x] = layer_ind[ptr];
weight_buf[threadIdx.x] = weight[ptr];
}
__syncwarp();
int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr;
for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) {
int64_t col = col_ind_buf[offset_ptr];
int64_t layer = layer_ind_buf[offset_ptr];
scalar_t w = weight_buf[offset_ptr];
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++) {
int64_t d = d_start + i * warpSize;
if (d >= dim)
break;
scalar_t rel = relation[layer * dim + d];
scalar_t in = input[col * dim + d];
scalar_t out = output[row * dim + d];
scalar_t out_grad = output_grad[row * dim + d];
scalar_t x = BinaryOp::forward(rel, in);
scalar_t y = w * x;
scalar_t dx_drel = BinaryOp::backward_lhs(rel, in);
scalar_t dx_din = BinaryOp::backward_rhs(rel, in);
scalar_t dout_dy = NaryOp::backward(out, y);
scalar_t dy_dx = w;
atomicAdd(&relation_grad[layer * dim + d], out_grad * dout_dy * dy_dx * dx_drel);
atomicAdd(&input_grad[col * dim + d], out_grad * dout_dy * dy_dx * dx_din);
}
}
__syncwarp();
}
}
template <template<class> class NaryOp, template<class> class BinaryOp>
Tensor rspmm_forward_cuda(const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_,
const Tensor &relation_, const Tensor &input_) {
constexpr const char *fn_name = "rspmm_forward_cuda";
TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2),
edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4),
input_arg(input_, "input", 5);
rspmm_forward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg);
checkAllSameGPU(fn_name, {edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg});
const Tensor edge_index = edge_index_.contiguous();
const Tensor edge_type = edge_type_.contiguous();
const Tensor edge_weight = edge_weight_.contiguous();
const Tensor relation = relation_.contiguous();
const Tensor input = input_.contiguous();
int64_t nnz = edge_index.size(0);
int64_t num_row = input.size(0);
int64_t dim = input.size(1);
Tensor output = at::empty({num_row, dim}, input.options());
Tensor row_ind = edge_index.select(0, 0);
Tensor row_ptr = ind2ptr(row_ind, num_row);
Tensor col_ind = edge_index.select(0, 1);
Tensor layer_ind = edge_type;
cudaSetDevice(input.get_device());
auto stream = at::cuda::getCurrentCUDAStream();
const int dim_per_block = 32; // warpSize
const int num_dim_block = (dim + dim_per_block * kCoarseningFactor - 1) / (dim_per_block * kCoarseningFactor);
const int row_per_block = kThreadPerBlock / dim_per_block;
const int num_row_block = (num_row + row_per_block - 1) / row_per_block;
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_forward_cuda", [&] {
const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t));
rspmm_forward_out_cuda<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>
<<<dim3(num_row_block, num_dim_block), dim3(dim_per_block, row_per_block), memory_size, stream>>>(
row_ptr.data_ptr<int64_t>(),
col_ind.data_ptr<int64_t>(),
layer_ind.data_ptr<int64_t>(),
edge_weight.data_ptr<scalar_t>(),
relation.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
num_row, nnz, dim
);
});
return output;
}
template <template<class> class NaryOp, template<class> class BinaryOp>
std::tuple<Tensor, Tensor, Tensor> rspmm_backward_cuda(
const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_,
const Tensor &relation_, const Tensor &input_, const Tensor &output_, const Tensor &output_grad_) {
constexpr const char *fn_name = "rspmm_backward_cuda";
TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2),
edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4),
input_arg(input_, "input", 5), output_arg(output_, "output", 6),
output_grad_arg(output_grad_, "output_grad", 7);
rspmm_backward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg,
output_arg, output_grad_arg);
checkAllSameGPU(fn_name, {edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg, output_arg,
output_grad_arg});
const Tensor edge_index = edge_index_.contiguous();
const Tensor edge_type = edge_type_.contiguous();
const Tensor edge_weight = edge_weight_.contiguous();
const Tensor relation = relation_.contiguous();
const Tensor input = input_.contiguous();
const Tensor output = output_.contiguous();
const Tensor output_grad = output_grad_.contiguous();
int64_t nnz = edge_index.size(0);
int64_t num_row = input.size(0);
int64_t dim = input.size(1);
Tensor weight_grad = at::zeros_like(edge_weight);
Tensor relation_grad = at::zeros_like(relation);
Tensor input_grad = at::zeros_like(input);
Tensor row_ind = edge_index.select(0, 0);
Tensor row_ptr = ind2ptr(row_ind, num_row);
Tensor col_ind = edge_index.select(0, 1);
Tensor layer_ind = edge_type;
cudaSetDevice(input.get_device());
auto stream = at::cuda::getCurrentCUDAStream();
const int dim_per_block = 32; // warpSize
const int num_dim_block = (dim + dim_per_block * kCoarseningFactor - 1) / (dim_per_block * kCoarseningFactor);
const int row_per_block = kThreadPerBlock / dim_per_block;
const int num_row_block = (num_row + row_per_block - 1) / row_per_block;
if (edge_weight.requires_grad())
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cuda", [&] {
const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t));
rspmm_backward_out_cuda<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>
<<<dim3(num_row_block, num_dim_block), dim3(dim_per_block, row_per_block), memory_size, stream>>>(
row_ptr.data_ptr<int64_t>(),
col_ind.data_ptr<int64_t>(),
layer_ind.data_ptr<int64_t>(),
edge_weight.data_ptr<scalar_t>(),
relation.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
output_grad.data_ptr<scalar_t>(),
weight_grad.data_ptr<scalar_t>(),
relation_grad.data_ptr<scalar_t>(),
input_grad.data_ptr<scalar_t>(),
num_row, nnz, dim
);
});
else
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cuda", [&] {
const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t));
rspmm_backward_out_cuda<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>
<<<dim3(num_row_block, num_dim_block), dim3(dim_per_block, row_per_block), memory_size, stream>>>(
row_ptr.data_ptr<int64_t>(),
col_ind.data_ptr<int64_t>(),
layer_ind.data_ptr<int64_t>(),
edge_weight.data_ptr<scalar_t>(),
relation.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
output_grad.data_ptr<scalar_t>(),
relation_grad.data_ptr<scalar_t>(),
input_grad.data_ptr<scalar_t>(),
num_row, nnz, dim
);
});
return std::make_tuple(weight_grad, relation_grad, input_grad);
}
#define DECLARE_FORWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \
Tensor rspmm_##ADD##_##MUL##_forward_cuda( \
const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight, \
const Tensor &relation, const Tensor &input) { \
return rspmm_forward_cuda<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input); \
}
#define DECLARE_BACKWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \
std::tuple<Tensor, Tensor, Tensor> rspmm_##ADD##_##MUL##_backward_cuda( \
const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight, \
const Tensor &relation, const Tensor &input, const Tensor &output, const Tensor &output_grad) { \
return rspmm_backward_cuda<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input, \
output, output_grad); \
}
DECLARE_FORWARD_IMPL(add, mul, NaryAdd, BinaryMul)
DECLARE_BACKWARD_IMPL(add, mul, NaryAdd, BinaryMul)
DECLARE_FORWARD_IMPL(min, mul, NaryMin, BinaryMul)
DECLARE_BACKWARD_IMPL(min, mul, NaryMin, BinaryMul)
DECLARE_FORWARD_IMPL(max, mul, NaryMax, BinaryMul)
DECLARE_BACKWARD_IMPL(max, mul, NaryMax, BinaryMul)
DECLARE_FORWARD_IMPL(add, add, NaryAdd, BinaryAdd)
DECLARE_BACKWARD_IMPL(add, add, NaryAdd, BinaryAdd)
DECLARE_FORWARD_IMPL(min, add, NaryMin, BinaryAdd)
DECLARE_BACKWARD_IMPL(min, add, NaryMin, BinaryAdd)
DECLARE_FORWARD_IMPL(max, add, NaryMax, BinaryAdd)
DECLARE_BACKWARD_IMPL(max, add, NaryMax, BinaryAdd)
} // namespace at |