File size: 11,603 Bytes
89650c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import torch
from torch import nn
from torch.nn import functional as F
from torch_scatter import scatter
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import degree
from typing import Tuple
class GeneralizedRelationalConv(MessagePassing):
eps = 1e-6
message2mul = {
"transe": "add",
"distmult": "mul",
}
# TODO for compile() - doesn't work currently
# propagate_type = {"edge_index": torch.LongTensor, "size": Tuple[int, int]}
def __init__(self, input_dim, output_dim, num_relation, query_input_dim, message_func="distmult",
aggregate_func="pna", layer_norm=False, activation="relu", dependent=False, project_relations=False):
super(GeneralizedRelationalConv, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_relation = num_relation
self.query_input_dim = query_input_dim
self.message_func = message_func
self.aggregate_func = aggregate_func
self.dependent = dependent
self.project_relations = project_relations
if layer_norm:
self.layer_norm = nn.LayerNorm(output_dim)
else:
self.layer_norm = None
if isinstance(activation, str):
self.activation = getattr(F, activation)
else:
self.activation = activation
if self.aggregate_func == "pna":
self.linear = nn.Linear(input_dim * 13, output_dim)
else:
self.linear = nn.Linear(input_dim * 2, output_dim)
if dependent:
# obtain relation embeddings as a projection of the query relation
self.relation_linear = nn.Linear(query_input_dim, num_relation * input_dim)
else:
if not self.project_relations:
# relation embeddings as an independent embedding matrix per each layer
self.relation = nn.Embedding(num_relation, input_dim)
else:
# will be initialized after the pass over relation graph
self.relation = None
self.relation_projection = nn.Sequential(
nn.Linear(input_dim, input_dim),
nn.ReLU(),
nn.Linear(input_dim, input_dim)
)
def forward(self, input, query, boundary, edge_index, edge_type, size, edge_weight=None):
batch_size = len(query)
if self.dependent:
# layer-specific relation features as a projection of input "query" (relation) embeddings
relation = self.relation_linear(query).view(batch_size, self.num_relation, self.input_dim)
else:
if not self.project_relations:
# layer-specific relation features as a special embedding matrix unique to each layer
relation = self.relation.weight.expand(batch_size, -1, -1)
else:
# NEW and only change:
# projecting relation features to unique features for this layer, then resizing for the current batch
relation = self.relation_projection(self.relation)
if edge_weight is None:
edge_weight = torch.ones(len(edge_type), device=input.device)
# note that we send the initial boundary condition (node states at layer0) to the message passing
# correspond to Eq.6 on p5 in https://arxiv.org/pdf/2106.06935.pdf
output = self.propagate(input=input, relation=relation, boundary=boundary, edge_index=edge_index,
edge_type=edge_type, size=size, edge_weight=edge_weight)
return output
def propagate(self, edge_index, size=None, **kwargs):
if kwargs["edge_weight"].requires_grad or self.message_func == "rotate":
# the rspmm cuda kernel only works for TransE and DistMult message functions
# otherwise we invoke separate message & aggregate functions
return super(GeneralizedRelationalConv, self).propagate(edge_index, size, **kwargs)
for hook in self._propagate_forward_pre_hooks.values():
res = hook(self, (edge_index, size, kwargs))
if res is not None:
edge_index, size, kwargs = res
# in newer PyG,
# __check_input__ -> _check_input()
# __collect__ -> _collect()
# __fused_user_args__ -> _fuser_user_args
size = self._check_input(edge_index, size)
coll_dict = self._collect(self._fused_user_args, edge_index, size, kwargs)
msg_aggr_kwargs = self.inspector.distribute("message_and_aggregate", coll_dict)
for hook in self._message_and_aggregate_forward_pre_hooks.values():
res = hook(self, (edge_index, msg_aggr_kwargs))
if res is not None:
edge_index, msg_aggr_kwargs = res
out = self.message_and_aggregate(edge_index, **msg_aggr_kwargs)
for hook in self._message_and_aggregate_forward_hooks.values():
res = hook(self, (edge_index, msg_aggr_kwargs), out)
if res is not None:
out = res
update_kwargs = self.inspector.distribute("update", coll_dict)
out = self.update(out, **update_kwargs)
for hook in self._propagate_forward_hooks.values():
res = hook(self, (edge_index, size, kwargs), out)
if res is not None:
out = res
return out
def message(self, input_j, relation, boundary, edge_type):
relation_j = relation.index_select(self.node_dim, edge_type)
if self.message_func == "transe":
message = input_j + relation_j
elif self.message_func == "distmult":
message = input_j * relation_j
elif self.message_func == "rotate":
x_j_re, x_j_im = input_j.chunk(2, dim=-1)
r_j_re, r_j_im = relation_j.chunk(2, dim=-1)
message_re = x_j_re * r_j_re - x_j_im * r_j_im
message_im = x_j_re * r_j_im + x_j_im * r_j_re
message = torch.cat([message_re, message_im], dim=-1)
else:
raise ValueError("Unknown message function `%s`" % self.message_func)
# augment messages with the boundary condition
message = torch.cat([message, boundary], dim=self.node_dim) # (num_edges + num_nodes, batch_size, input_dim)
return message
def aggregate(self, input, edge_weight, index, dim_size):
# augment aggregation index with self-loops for the boundary condition
index = torch.cat([index, torch.arange(dim_size, device=input.device)]) # (num_edges + num_nodes,)
edge_weight = torch.cat([edge_weight, torch.ones(dim_size, device=input.device)])
shape = [1] * input.ndim
shape[self.node_dim] = -1
edge_weight = edge_weight.view(shape)
if self.aggregate_func == "pna":
mean = scatter(input * edge_weight, index, dim=self.node_dim, dim_size=dim_size, reduce="mean")
sq_mean = scatter(input ** 2 * edge_weight, index, dim=self.node_dim, dim_size=dim_size, reduce="mean")
max = scatter(input * edge_weight, index, dim=self.node_dim, dim_size=dim_size, reduce="max")
min = scatter(input * edge_weight, index, dim=self.node_dim, dim_size=dim_size, reduce="min")
std = (sq_mean - mean ** 2).clamp(min=self.eps).sqrt()
features = torch.cat([mean.unsqueeze(-1), max.unsqueeze(-1), min.unsqueeze(-1), std.unsqueeze(-1)], dim=-1)
features = features.flatten(-2)
degree_out = degree(index, dim_size).unsqueeze(0).unsqueeze(-1)
scale = degree_out.log()
scale = scale / scale.mean()
scales = torch.cat([torch.ones_like(scale), scale, 1 / scale.clamp(min=1e-2)], dim=-1)
output = (features.unsqueeze(-1) * scales.unsqueeze(-2)).flatten(-2)
else:
output = scatter(input * edge_weight, index, dim=self.node_dim, dim_size=dim_size,
reduce=self.aggregate_func)
return output
def message_and_aggregate(self, edge_index, input, relation, boundary, edge_type, edge_weight, index, dim_size):
# fused computation of message and aggregate steps with the custom rspmm cuda kernel
# speed up computation by several times
# reduce memory complexity from O(|E|d) to O(|V|d), so we can apply it to larger graphs
from ultra.rspmm.rspmm import generalized_rspmm
batch_size, num_node = input.shape[:2]
input = input.transpose(0, 1).flatten(1)
relation = relation.transpose(0, 1).flatten(1)
boundary = boundary.transpose(0, 1).flatten(1)
degree_out = degree(index, dim_size).unsqueeze(-1) + 1
if self.message_func in self.message2mul:
mul = self.message2mul[self.message_func]
else:
raise ValueError("Unknown message function `%s`" % self.message_func)
if self.aggregate_func == "sum":
update = generalized_rspmm(edge_index, edge_type, edge_weight, relation, input, sum="add", mul=mul)
update = update + boundary
elif self.aggregate_func == "mean":
update = generalized_rspmm(edge_index, edge_type, edge_weight, relation, input, sum="add", mul=mul)
update = (update + boundary) / degree_out
elif self.aggregate_func == "max":
update = generalized_rspmm(edge_index, edge_type, edge_weight, relation, input, sum="max", mul=mul)
update = torch.max(update, boundary)
elif self.aggregate_func == "pna":
# we use PNA with 4 aggregators (mean / max / min / std)
# and 3 scalars (identity / log degree / reciprocal of log degree)
sum = generalized_rspmm(edge_index, edge_type, edge_weight, relation, input, sum="add", mul=mul)
sq_sum = generalized_rspmm(edge_index, edge_type, edge_weight, relation ** 2, input ** 2, sum="add",
mul=mul)
max = generalized_rspmm(edge_index, edge_type, edge_weight, relation, input, sum="max", mul=mul)
min = generalized_rspmm(edge_index, edge_type, edge_weight, relation, input, sum="min", mul=mul)
mean = (sum + boundary) / degree_out
sq_mean = (sq_sum + boundary ** 2) / degree_out
max = torch.max(max, boundary)
min = torch.min(min, boundary) # (node, batch_size * input_dim)
std = (sq_mean - mean ** 2).clamp(min=self.eps).sqrt()
features = torch.cat([mean.unsqueeze(-1), max.unsqueeze(-1), min.unsqueeze(-1), std.unsqueeze(-1)], dim=-1)
features = features.flatten(-2) # (node, batch_size * input_dim * 4)
scale = degree_out.log()
scale = scale / scale.mean()
scales = torch.cat([torch.ones_like(scale), scale, 1 / scale.clamp(min=1e-2)], dim=-1) # (node, 3)
update = (features.unsqueeze(-1) * scales.unsqueeze(-2)).flatten(-2) # (node, batch_size * input_dim * 4 * 3)
else:
raise ValueError("Unknown aggregation function `%s`" % self.aggregate_func)
update = update.view(num_node, batch_size, -1).transpose(0, 1)
return update
def update(self, update, input):
# node update as a function of old states (input) and this layer output (update)
output = self.linear(torch.cat([input, update], dim=-1))
if self.layer_norm:
output = self.layer_norm(output)
if self.activation:
output = self.activation(output)
return output
|