--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 97.20 +/- 138.21 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'LunarLander-v3' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'f': '/root/.local/share/jupyter/runtime/kernel-b1e556d7-bdda-4e73-8875-1705f0553981.json' 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.002 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.88 'num_minibatches': 8 'update_epochs': 3 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.0009 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'mgmeskill/ppo-LunarLander-v3' 'batch_size': 512 'minibatch_size': 64} ```