test_stage: obcq_modifiers: LogarithmicEqualizationModifier: mappings: [ [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"], [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"], ] QuantizationModifier: ignore: # These operations don't make sense to quantize - LlamaRotaryEmbedding - LlamaRMSNorm - SiLUActivation # Skip quantizing the layers with the most sensitive activations - model.layers.3.mlp.down_proj - model.layers.38.mlp.down_proj - model.layers.39.mlp.down_proj - model.layers.0.mlp.down_proj - model.layers.37.mlp.down_proj - MatMulOutput_QK - MatMulOutput_PV post_oneshot_calibration: true scheme_overrides: Linear: weights: num_bits: 8 symmetric: true strategy: channel MatMulLeftInput_QK: input_activations: num_bits: 8 symmetric: true MatMulLeftInput_PV: input_activations: num_bits: 8 symmetric: true Embedding: input_activations: null weights: num_bits: 8 symmetric: false SparseGPTModifier: sparsity: 0.5 block_size: 128 sequential_update: true quantize: true percdamp: 0.01 mask_structure: "0:0" targets: ["re:model.layers.\\d*$"]