{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a5ea2d1e8c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732105128582721704, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp8Pr1cx3q6Mj4IOTztPjRoOPs6JwceuAAAgD8AAIA/5jCvvQ88rz+/+Ay/tHSdvgANmL0kGKe+AAAAAAAAAAAz0Iw8TzsOPbWlgTyd0iW+gXzkvMIcpz0AAAAAAAAAAPPWxT2P9mS6KDmSOo0tmzWOXt66cMyruQAAAAAAAIA/07hsPgfmQT/huxu+LUShvgjuaD3yAUO9AAAAAAAAAACmi509wzkUuu4YmLXQm82w9qFUuvKKsjQAAIA/AACAPwB8kLvhSJ+6ciKeOq3P1DU0Cb86Yv+0uQAAgD8AAIA/zfHlPBRchLqmrFk6y9Aztpqb/bmuwny5AACAPwAAgD8mAMM9w2k7usDvQ7sXxR63TTNuuIttYzoAAAAAAACAP4D8Y71cP0i65fIht1CUm7KqbgY7Ipk8NgAAgD8AAIA/Zqb+usOJP7ow5mw5ZpaLsA6807ob/om4AACAPwAAgD9N4rI9hUu6ufVsDbtXMrg2JEXzuhIIJjoAAIA/AACAP4DABz1cC0O67r0quAQjJ7O8m6G5/ttJNwAAgD8AAIA/oL0IPlHSqT0jJ/W6ZHJVvhoHEb2/3oe6AAAAAAAAAADzMec9rvWxur5O6rgAWx23YI2juMBYLrUAAIA/AACAPwDc2jwqYqg/CP2HPnlb/L6Mwgg6jeagPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUqal1r6+GMAWyUTegDjAF0lEdAlc9BoqTbFnV9lChoBkdAZt3JcPe54GgHTegDaAhHQJXYCdPLxI91fZQoaAZHQGBA4qG1x85oB03oA2gIR0CV2zjT8YQ8dX2UKGgGR0Bfi/h2nsLOaAdN6ANoCEdAld4lxS5y2nV9lChoBkdAY/fzWf9P12gHTegDaAhHQJXee8K5TZR1fZQoaAZHQFv022Xsw+NoB03oA2gIR0CV38kf9xZMdX2UKGgGR0BiHeT5ftx/aAdN6ANoCEdAleb1zEJjUnV9lChoBkdAYtzdHDrJKmgHTegDaAhHQJXvXpljEvV1fZQoaAZHQGRywlSjxkNoB03oA2gIR0CV9C6asp5NdX2UKGgGR0Bi1RyjpLVXaAdN6ANoCEdAlfoimZVn3HV9lChoBkdAYffnQpnYhGgHTegDaAhHQJX+gVARkEt1fZQoaAZHQGLWjcEeQuFoB03oA2gIR0CV/0gjyFwldX2UKGgGR0BfleJUHY6GaAdN6ANoCEdAlgImUKRdQnV9lChoBkdAZG16rNnoPmgHTegDaAhHQJYX5VcUuct1fZQoaAZHQGGw3dKujh1oB03oA2gIR0CWGGdk8RthdX2UKGgGR0Bl2UhC+lCUaAdN6ANoCEdAlh62rCFbmnV9lChoBkdAYijEgGKQ72gHTegDaAhHQJYe+7Wd3B51fZQoaAZHQGd0SCWeHzpoB03oA2gIR0CWJvCmuTzNdX2UKGgGR0BgsJQ1rIo3aAdN6ANoCEdAlipptBOYY3V9lChoBkdAStMMCtA9m2gHS9VoCEdAlixkbPyCnXV9lChoBkdAZwuWUKRdQmgHTegDaAhHQJYtzRa5f+l1fZQoaAZHQGa3jhDPWx1oB03oA2gIR0CWLiyn1nM/dX2UKGgGR0BlTcRvm5lOaAdN6ANoCEdAli+bCFbml3V9lChoBkdAYmDHavicXmgHTegDaAhHQJY3McQyylh1fZQoaAZHQE5tpljEvTRoB0vmaAhHQJY47TnaFmF1fZQoaAZHQGZRBMSK3uxoB03oA2gIR0CWP1VeKKpDdX2UKGgGR0BmgtvMr3CbaAdN6ANoCEdAlkMJy6tknXV9lChoBkdAYObtzCDVY2gHTegDaAhHQJZHkY51eSl1fZQoaAZHQGIL4KpkwvhoB03oA2gIR0CWS0GwA2hqdX2UKGgGR0BeM646Oo5xaAdN6ANoCEdAlkwXarWAgHV9lChoBkdAX4dRwZOzp2gHTegDaAhHQJZPCcFyJbd1fZQoaAZHQGT+K46Oo5xoB03oA2gIR0CWU2lsP8Q7dX2UKGgGR0BmuQKMNtqIaAdN6ANoCEdAllQEm2LHdXV9lChoBkdAOlaagElme2gHS+toCEdAlm4NdiUgS3V9lChoBkdAXvh4SpR4yGgHTegDaAhHQJZvqoIfKZF1fZQoaAZHQGK7UHhS9/VoB03oA2gIR0CWeFA9V3lkdX2UKGgGR0BlwD8xbjcVaAdN6ANoCEdAlnyerhisn3V9lChoBkdAZmXWuHN5dGgHTegDaAhHQJZ9ue5Fw1l1fZQoaAZHQGcrE2xY7q9oB03oA2gIR0CWfgbQTmGNdX2UKGgGR0BdcoSxqwhXaAdN6ANoCEdAln8rkKeCkHV9lChoBkdAYjfKYAsCk2gHTegDaAhHQJaGy2qkuYh1fZQoaAZHQGDsnCGetjloB03oA2gIR0CWiI/wiJO4dX2UKGgGR0BgrmqzZ6D5aAdN6ANoCEdAlpDjLW7OFHV9lChoBkdAYsucGTs6aWgHTegDaAhHQJaWKs90Rvp1fZQoaAZHQGARzC1qnFZoB03oA2gIR0CWm1S8an76dX2UKGgGR0BlqCOo5xR3aAdN6ANoCEdAlp7fEKmbb3V9lChoBkdAZkhHBk7OmmgHTegDaAhHQJai8Mtsen11fZQoaAZHQGbtpG4I8hdoB03oA2gIR0CWp4s/pt78dX2UKGgGR0BgJLEDQqqfaAdN6ANoCEdAlqgd9Ujs2XV9lChoBkdAYtfk4m1IAmgHTegDaAhHQJa+tNWU8mt1fZQoaAZHQGLNATIvJzVoB03oA2gIR0CWwCWX1J18dX2UKGgGR0BgnuIO6NEPaAdN6ANoCEdAlsroy44IbHV9lChoBkdAY+46Kcd5p2gHTegDaAhHQJbPp3Ux20R1fZQoaAZHQGT2R/d69kBoB03oA2gIR0CW0LQXyiEhdX2UKGgGR0BlVTqptJnQaAdN6ANoCEdAltD7TlT3qXV9lChoBkdAXeWOjqOcUmgHTegDaAhHQJbSA7wKBup1fZQoaAZHQGH7EOZssQNoB03oA2gIR0CW2QsRQJokdX2UKGgGR0BiMmMsH0K7aAdN6ANoCEdAltrNMTN+s3V9lChoBkdAZxaSkj5bhWgHTegDaAhHQJbhaDnNgSh1fZQoaAZHQGHxitA9mpVoB03oA2gIR0CW5PP4VRDUdX2UKGgGR0BjG56Y3Ns4aAdN6ANoCEdAlukrLMcIaHV9lChoBkdAZPW1Q66remgHTegDaAhHQJbsw9U0elt1fZQoaAZHQF1tCjDbah9oB03oA2gIR0CW8QeiSJTEdX2UKGgGR0Bk34TfzjFRaAdN6ANoCEdAlvY9yHVPN3V9lChoBkdAZEehB7eEZmgHTegDaAhHQJb2/nMdLg51fZQoaAZHQGBTFa0QbuNoB03oA2gIR0CXEby+pOvddX2UKGgGR0BfPHsC1Z1WaAdN6ANoCEdAlxMbUG3WnXV9lChoBkdAZceK+BYms2gHTegDaAhHQJcbIU5+6RR1fZQoaAZHQGR/7UPQOWloB03oA2gIR0CXH0t4RmK7dX2UKGgGR0BlMT0Dlo12aAdN6ANoCEdAlyBDwH7gsXV9lChoBkdAYf0Z6Uqx1WgHTegDaAhHQJcgjPGACnx1fZQoaAZHQFbqL5ylvZRoB03oA2gIR0CXIZ+9rXUZdX2UKGgGR0Bo9cCkoF3ZaAdN6ANoCEdAlyj2waBI4HV9lChoBkdAY6Z2wmmcfGgHTegDaAhHQJcrLc2zfJp1fZQoaAZHQGRnvDYRNAVoB03oA2gIR0CXNJFvhqCZdX2UKGgGR0BdZUiyIHkcaAdN6ANoCEdAlzi4xk/bCnV9lChoBkdAZMQ0Q9RrJ2gHTegDaAhHQJc9oxXXAdp1fZQoaAZHQGRNO7YkE9toB03oA2gIR0CXQe/m1YyPdX2UKGgGR0BrIiOinHeaaAdNugNoCEdAl0OrcCYCyXV9lChoBkdAY/VRIjGDMGgHTegDaAhHQJdMHVqesgd1fZQoaAZHQF3iU6xPfsNoB03oA2gIR0CXTLW+49X+dX2UKGgGR0BiRlRiw0O3aAdN6ANoCEdAl2ZNnPE873V9lChoBkdAZQIIAOrhi2gHTegDaAhHQJdoKQU5+6R1fZQoaAZHQGQ4j9XLeRBoB03oA2gIR0CXcNvybx3FdX2UKGgGR0BgAeXC0ngHaAdN6ANoCEdAl3TiIHkcTHV9lChoBkdAWaVky1uzhWgHTegDaAhHQJd163Ytg8d1fZQoaAZHQF7hy2QXAM5oB03oA2gIR0CXdjpMpPRBdX2UKGgGR0BciTp5eJHiaAdN6ANoCEdAl3dbKRuCPXV9lChoBkdAYAt1DBuXNWgHTegDaAhHQJd9uFGoaUB1fZQoaAZHQGbjB5HEuQJoB03oA2gIR0CXfzhVENONdX2UKGgGR0BdX16qsEJTaAdN6ANoCEdAl4V16Z6Uq3V9lChoBkdAZSzZbILgGmgHTegDaAhHQJeI09Oh0yR1fZQoaAZHQG/xRNIsiB5oB03RAmgIR0CXiRfrKNhmdX2UKGgGR0BmBPxaxHG0aAdN6ANoCEdAl4y5tJnQIHV9lChoBkdAYs8MSbpeNWgHTegDaAhHQJeQO38XN1R1fZQoaAZHQGQ7zYNAkcFoB03oA2gIR0CXkXIn0CiidX2UKGgGR0BM61mjCYTkaAdL3mgIR0CXkYeGwiaBdX2UKGgGR0BwzNUp/gBLaAdN5ANoCEdAl5lhPXTVlXV9lChoBkdALOpx3mmtQ2gHS/VoCEdAl574AGSpznV9lChoBkdAZv+u7HyVfWgHTegDaAhHQJefOQIUrTZ1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}