ppo-LunarLander-v2-3 / config.json
mhdaw's picture
Upload PPO LunarLander-v2 trained agent
6874d48
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79933cd581f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79933cd58280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79933cd58310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79933cd583a0>", "_build": "<function ActorCriticPolicy._build at 0x79933cd58430>", "forward": "<function ActorCriticPolicy.forward at 0x79933cd584c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79933cd58550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79933cd585e0>", "_predict": "<function ActorCriticPolicy._predict at 0x79933cd58670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79933cd58700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79933cd58790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79933cd58820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79933cd52680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691109068029396769, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO9LD1cHz66vvM7vIW8CrG8KaM7Rqe/swAAgD8AAIA/mo7SvfxRtj8Zgh2/3cwWvkCxLr3D/6a+AAAAAAAAAAAai+I9Gd2mP/Z0wT6kGwW/SC5bPl72pD4AAAAAAAAAADp8Iz6brIQ+FVRAvocjEr+TCIo+ABv+vQAAAAAAAAAAM1OjOsN1VTneZ/Y7LuPFPAO2dbvKVYy9AACAPwAAgD8z0wM9ww0funfIHDwEvnsyXekmO7au/jMAAIA/AACAP9r2Gz4kWnA/Ju+3Pv9TW7+OOqA+L7G0PQAAAAAAAAAAGiUBPVKkxrtlQs27F1qsPPosIz1ShJC9AACAPwAAgD9zkYG9Kfx0uhEaHzsVkh224n4su2bmGLUAAIA/AACAP2aTWb3TTKM+0XmmPJWHIb8UpvK9uFYCPQAAAAAAAAAAZvUWvZRcsztjAVS9UkGPvl15oL3iBrm9AACAPwAAAACa2SS8SD+BuoLuzrOk+bUuqc4AOmczqDMAAIA/AACAP82FkL3sWZy7wZYxPhLMVT0tZ0G9SyTZPQAAAAAAAAAAmujwvI9qQrqHdLc9pN0Wsyinh7sSyQyzAACAPwAAgD8a/Ci9Ylu1P+r4X751clm+PA+cvLW7cL0AAAAAAAAAAOYsUT06u7w/fWT7Pv+4Jj4JKZc8qN/dPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHSYjSofjmMAWyUS66MAXSUR0CyUCor4FibdX2UKGgGR0BxyEq7ROUMaAdLimgIR0CyUDaoddVvdX2UKGgGR0Bzq5fmcOLBaAdLuGgIR0CyUDZrYXfqdX2UKGgGR0ByfZ3yI55raAdLh2gIR0CyUEzR6WxAdX2UKGgGR0BwEu/tY0VKaAdLpmgIR0CyUFnGwRoRdX2UKGgGR0ByoNHmRvFWaAdLs2gIR0CyUFyad+XrdX2UKGgGR0BxXl2Qnx8VaAdLsGgIR0CyUGxUvPC3dX2UKGgGR0BvTBFkQPI5aAdLl2gIR0CyUHGYSg5BdX2UKGgGR0Bw47gVGkN4aAdLsWgIR0CyUKV/2Cd0dX2UKGgGR0BzqC15Sm65aAdLwGgIR0CyUNchLXcydX2UKGgGR0BzeKFUQ04zaAdL0WgIR0CyUPN/z8P4dX2UKGgGR0Bz2CaJAMUiaAdLn2gIR0CyURChrWRSdX2UKGgGR0B0A1iZv1lHaAdLz2gIR0CyUTQBtDUmdX2UKGgGR0B0LMep4rz5aAdLyGgIR0CyUThvaURndX2UKGgGR0ByiuI0qH45aAdLu2gIR0CyUUSpWFN+dX2UKGgGR0Bzr0c+7lJZaAdL0GgIR0CyUWBiG34LdX2UKGgGR0ByGf212JSBaAdLnWgIR0CyUXGTTvy9dX2UKGgGR0BzAJJCjUNKaAdLp2gIR0CyUXdX1anrdX2UKGgGR0BwTe+10DEFaAdLmWgIR0CyUad5t3wDdX2UKGgGR0By+uRmseXBaAdLvmgIR0CyUa2YWtU5dX2UKGgGR0ByaCKIi1RcaAdLkWgIR0CyUcN/WlMzdX2UKGgGR0BzKrO7g88taAdLwmgIR0CyUc3Zbpu/dX2UKGgGR0B0ELUaya/iaAdLymgIR0CyUddJrcj8dX2UKGgGR0BzLvU7Sy+paAdLwWgIR0CyUdjm8ujAdX2UKGgGR0BzyH3j+717aAdL2GgIR0CyUd/l2eQNdX2UKGgGR0BxhetcOby6aAdLqGgIR0CyUfrSRbKSdX2UKGgGR0BxEoJdB0IUaAdLkWgIR0CyUgA0sOG1dX2UKGgGR0BxUOwwCbMHaAdLqWgIR0CyUgyUHIIXdX2UKGgGR0BwAOnqFAVxaAdLk2gIR0CyUhcQumJndX2UKGgGR0Byc2UOd5IIaAdLgWgIR0CyUiHkLhJidX2UKGgGR0Bx1zBJqZc+aAdLqmgIR0CyUi/nW8RMdX2UKGgGR0BwSx+/gzguaAdLn2gIR0CyUjvvfCQ+dX2UKGgGR0By79AX2ugZaAdLtmgIR0CyUkjQ/oq1dX2UKGgGR0BxTGpsGgSOaAdLlWgIR0CyUl59NN8FdX2UKGgGR0By1JEiMYMwaAdLxGgIR0CyUnrOmixndX2UKGgGR0ByENi9Zid8aAdLkWgIR0CyUokDMeOodX2UKGgGR0BzD7jbSJCTaAdLtWgIR0CyUo6Ieo1ldX2UKGgGR0Bx6VGc4HX3aAdLsGgIR0CyUp5Fw1iwdX2UKGgGR0ByVchGH58CaAdLnWgIR0CyUqJvkzXSdX2UKGgGR0BwTrkxREWqaAdLpWgIR0CyUqVWn0kGdX2UKGgGR0B0TlAs052haAdLwGgIR0CyUry5VfeDdX2UKGgGR0ByUs3eenQ6aAdLp2gIR0CyUs6/ub7TdX2UKGgGR0BzRXc2zfJnaAdLqmgIR0CyUuYaxX4kdX2UKGgGR0BxVSLEUCaJaAdLi2gIR0CyUuRhpg1FdX2UKGgGR0BwXTivPkaNaAdLuWgIR0CyUuvyoXKsdX2UKGgGR0Bykq8SPEKmaAdLrWgIR0CyUvSFbmlqdX2UKGgGR0ByZgBMi8nNaAdLimgIR0CyUw72xptadX2UKGgGR0BzJUtpVS4waAdLxmgIR0CyUx/fCQ9zdX2UKGgGR0Bx7M+EAYHgaAdLkWgIR0CyU0KHj6vadX2UKGgGR0Bw7rEcbR4RaAdLoGgIR0CyU0hjJ+2FdX2UKGgGR0Bz+Qnw5NoKaAdLymgIR0CyU0ztTkyUdX2UKGgGR0BzcoY0l7dBaAdL1mgIR0CyU0+JYT0ydX2UKGgGR0BykmeDnNgSaAdLmGgIR0CyU1++IuXedX2UKGgGR0ByBqAWi1zAaAdLq2gIR0CyU2bjtG/fdX2UKGgGR0BzRNiZv1lHaAdLp2gIR0CyU3MEq2BrdX2UKGgGR0BzHNNJvo/zaAdLmGgIR0CyU3it7rs0dX2UKGgGR0BvXugWac7RaAdLlWgIR0CyU4RkiD/VdX2UKGgGR0BxRRPRArxzaAdLjGgIR0CyU4zkMkQgdX2UKGgGR0Bx44TBZZB+aAdLwmgIR0CyU5J8F6iTdX2UKGgGR0Bw2XnNgSezaAdLh2gIR0CyU5VtbcGkdX2UKGgGR0Bx8olF+d9VaAdLomgIR0CyU6dl2/zrdX2UKGgGR0Bzc7UkOZssaAdLsGgIR0CyU70nw5NodX2UKGgGR0Byi0GB4D9waAdLkmgIR0CyU8q19fCzdX2UKGgGR0BxOv7IkqtpaAdLyWgIR0CyVACTUy57dX2UKGgGR0BxqG/IsAeaaAdLoGgIR0CyVAR8pkPMdX2UKGgGR0Bwo+OEM9bHaAdLnmgIR0CyVAjCxeLOdX2UKGgGR0BynvNJOFg2aAdLgWgIR0CyVAuOfdyldX2UKGgGR0Bx3KMm4RVZaAdLs2gIR0CyVBfpljEvdX2UKGgGR0BAxLBTGYKIaAdLXmgIR0CyVB7bQC0XdX2UKGgGR0BzppmyxA0LaAdLu2gIR0CyVC9R3u/ldX2UKGgGR0ByciKGcnVoaAdLmWgIR0CyVDTyBkI5dX2UKGgGR0BzjnHEMspYaAdLtWgIR0CyVDp00WM1dX2UKGgGR0Bx650+1SflaAdLsWgIR0CyVD1KCg9NdX2UKGgGR0BxazBi1AqvaAdLomgIR0CyVEsuWa+fdX2UKGgGR0BxRMX/HYHxaAdLn2gIR0CyVFBoRIz4dX2UKGgGR0BxsqbUgB91aAdLpGgIR0CyVFyWRigCdX2UKGgGR0BwsokfLcKxaAdLqWgIR0CyVGWO2iL3dX2UKGgGR0ByeZxZMcp9aAdLp2gIR0CyVIwGOdXldX2UKGgGR0ByJwPvrnklaAdLt2gIR0CyVK1CHARDdX2UKGgGR0Bwu9q59Vm0aAdLl2gIR0CyVMI4ACGOdX2UKGgGR0BzE8KfFrEcaAdLoWgIR0CyVOGQr+YMdX2UKGgGR0B0ZvSjQAuJaAdLrGgIR0CyVOq814xDdX2UKGgGR0By72EM9bHIaAdLwWgIR0CyVO8zMzMzdX2UKGgGR0ByymX7cfvGaAdLwGgIR0CyVPHZ9NN8dX2UKGgGR0Bygc9Pk7wKaAdLomgIR0CyVPeyVv/BdX2UKGgGR0ByOus7uDzzaAdLpGgIR0CyVP9O/L1VdX2UKGgGR0ByO0F9roGIaAdLxWgIR0CyVP3w1BMSdX2UKGgGR0Bxftn3+MqCaAdLqmgIR0CyVQhzBAObdX2UKGgGR0By3cI1LrX2aAdLt2gIR0CyVQmJm/WUdX2UKGgGR0BxmkOOKfnPaAdLi2gIR0CyVQ08A7xNdX2UKGgGR0BxG0xk/bCaaAdLpGgIR0CyVRAb+98JdX2UKGgGR0Bx9NW8yvcKaAdLqGgIR0CyVST987ZGdX2UKGgGR0BzAKR5kbxWaAdLy2gIR0CyVUN2cJ+ldX2UKGgGR0Bw3NIUahpQaAdLq2gIR0CyVVrHQyAQdX2UKGgGR0Bw5YMKCxu9aAdLnWgIR0CyVWqg/TsqdX2UKGgGR0BwWqb2Dg62aAdLp2gIR0CyVY0GZ/kOdX2UKGgGR0BxUuswL3K0aAdLl2gIR0CyVZkUj9n9dX2UKGgGR0Bxz6N6w+t9aAdLi2gIR0CyVaEhJRO2dX2UKGgGR0Bz6QFiay8jaAdLm2gIR0CyVag6U7jldX2UKGgGR0BwkeMVDa4+aAdLmmgIR0CyVaupGWledWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}