ppo-LunarLander-v2-4 / config.json
mhdaw's picture
Upload PPO LunarLander-v2 trained agent
8ec869f
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3f01ff80d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3f01ff8160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3f01ff81f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3f01ff8280>", "_build": "<function ActorCriticPolicy._build at 0x7a3f01ff8310>", "forward": "<function ActorCriticPolicy.forward at 0x7a3f01ff83a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3f01ff8430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3f01ff84c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a3f01ff8550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3f01ff85e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3f01ff8670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3f01ff8700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a3f01feacc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691185947028101220, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoDvryELOo9udmJPXRzAL/AWxU5IiYUuwAAAAAAAAAAGiK4PZ8O3zxCfay+DnqNvrPww77+jrE7AACAPwAAAABNkma+22YOP27fKD1EqhS/zhvKvlr6Dz4AAAAAAAAAAJr+AT2kpGO7Nf5Jva2rGz3Q16U8aC5gPAAAgD8AAIA/AAcOvR8tprn7VVu1D+YJsNAsb7rdcYo0AACAPwAAgD/NlsA8CKiuP5zhEz/sRw6/MAKDvE76ubwAAAAAAAAAAJrdlDuBV7S8om7EPayfZT03+ca9fkvmPAAAgD8AAIA/msnhPeR7sD0eN+W+bxLivqvW2ruO6qu+AAAAAAAAAACzNLE9EJ6lP3Iglz66lge/hhgsPlnCnj4AAAAAAAAAADMXerx72vW6P5QFPR+WMTxjP5C75c0dPQAAgD8AAIA/AFtCPSnUbLpZWSm+vHqLvE6f0Tyafq0+AAAAAAAAgD8z3M88dgcuvGOLX71xOLw8mKIqPZ7owrsAAIA/AACAPwDWybwUKOK6t8PIPew8xDz0Msa7J26oPQAAgD8AAIA/Tdc2PRJ+vT+b6/o+I+hyPtHjQLupBpk8AAAAAAAAAADm32C9XGA/vHjjnz1QCJI9qd6ovQjWorwAAIA/AACAP7MAjr1YOv49Q6m6PAGj/r5Suoi9pubIvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKZA9aEBbSMAWyUS7qMAXSUR0C8bPW9DhLodX2UKGgGR0Bzn02S+xnnaAdLnWgIR0C8bQIIa99MdX2UKGgGR0BzCmce8wpOaAdLnGgIR0C8bQadMCcPdX2UKGgGR0ByKpPi1iOOaAdLsmgIR0C8bSxoZhrndX2UKGgGR0BwEkbNr0rcaAdLoWgIR0C8bTrhvR7adX2UKGgGR0Bz0iaOPvKEaAdLs2gIR0C8bUuwX668dX2UKGgGR0ByfX2dupCKaAdLkGgIR0C8bXOMERradX2UKGgGR0ByvwAGSpzcaAdLjWgIR0C8bXve54GEdX2UKGgGR0BylPv9cbBHaAdLqWgIR0C8bXwemvW6dX2UKGgGR0BxhPUNKAavaAdLl2gIR0C8bYY6r/83dX2UKGgGR0Bu7/zlLeyiaAdLjWgIR0C8bYhEv0yydX2UKGgGR0BxKRXhfjS5aAdLnWgIR0C8bZK11GLDdX2UKGgGR0Byg1At4A0baAdLlmgIR0C8bZ5LuhK2dX2UKGgGR0BzEzfQ8fV7aAdLuGgIR0C8baSfL9uQdX2UKGgGR0ByOw3S8an8aAdLtWgIR0C8baasMiKSdX2UKGgGR0BvgPmLcbiqaAdLkmgIR0C8bbI8uBczdX2UKGgGR0BzZaZrpJPJaAdLmGgIR0C8bcpYYBNmdX2UKGgGR0ByAim51/2CaAdLp2gIR0C8bdCHqNZNdX2UKGgGR0BwZGuieumraAdLm2gIR0C8bfln/T9bdX2UKGgGR0BzTxD5TIeYaAdLu2gIR0C8bf29QGfPdX2UKGgGR0BzIfCHh0heaAdLsWgIR0C8biirDIikdX2UKGgGR0Bzyg6V+qioaAdLsWgIR0C8bjmCdz4ldX2UKGgGR0BwrTfAKv3baAdLkmgIR0C8bj6fjCHidX2UKGgGR0BwBEEidJ8OaAdLkWgIR0C8bkfHo5ggdX2UKGgGR0BzpE9Oh0yQaAdLp2gIR0C8blMgEEDAdX2UKGgGR0BwAe7g88s+aAdLj2gIR0C8blHW8RL9dX2UKGgGR0Bw8PZdv864aAdLjGgIR0C8bl+v6j33dX2UKGgGR0BwQ/hCMPz4aAdLrWgIR0C8bmKc3EQ5dX2UKGgGR0Bw3HN+so2GaAdLiGgIR0C8bmmHYYixdX2UKGgGR0BydJBF/hESaAdLq2gIR0C8boDDCP6sdX2UKGgGR0BzD4DU3GXHaAdLvWgIR0C8boLCvX9SdX2UKGgGR0BzZq0TlDF7aAdLtmgIR0C8bpf8Q7LddX2UKGgGR0BzQ6cTakAQaAdLoWgIR0C8bqt/z8P4dX2UKGgGR0BzurfEXLvDaAdLsWgIR0C8brqgyuZDdX2UKGgGR0BzuMe/5+H8aAdLvWgIR0C8bwDghr31dX2UKGgGR0B0g99fCyhSaAdLrWgIR0C8bxnZXdTHdX2UKGgGR0BzdiTMaCL/aAdL0GgIR0C8byHYpUgkdX2UKGgGR0ByFClDWsijaAdLjGgIR0C8bym9L6DXdX2UKGgGR0BxZ159mYjTaAdLq2gIR0C8bypbhWHUdX2UKGgGR0BxAJlNDc/MaAdLpGgIR0C8bznLNfPYdX2UKGgGR0BxITYsd1dPaAdLs2gIR0C8bzs3IdU9dX2UKGgGR0BzXR6Y3Ns4aAdLtGgIR0C8b0U1/DtPdX2UKGgGR0BzNCvpyIYWaAdLpmgIR0C8b0rJr+HadX2UKGgGR0BzRBcophF3aAdLv2gIR0C8b136dlNDdX2UKGgGR0BxzGtEG7jDaAdLrGgIR0C8b1vQrtmddX2UKGgGR0Bx1KCBf8dgaAdLn2gIR0C8b2PrGBFvdX2UKGgGR0Bwr3ndO6/ZaAdLlmgIR0C8b2vszEaVdX2UKGgGR0Bv46fapPykaAdLumgIR0C8b4Knm7rcdX2UKGgGR0Bz3HgpBomHaAdLpWgIR0C8b4/eUILPdX2UKGgGR0BzqnmPo3aSaAdLq2gIR0C8b6UfLcKxdX2UKGgGR0BwL5pTMqz7aAdLkGgIR0C8b/W/rSmZdX2UKGgGR0BzhvwF1SwXaAdLp2gIR0C8cACAYpDvdX2UKGgGR0ByBgiu+yquaAdLrWgIR0C8cAFzltCRdX2UKGgGR0BxT40SAYpEaAdLiWgIR0C8b/5xWDHwdX2UKGgGR0ByviEL6UJOaAdLpGgIR0C8cAL+o99udX2UKGgGR0Bwl7sY2sJZaAdLm2gIR0C8cAZb2USqdX2UKGgGR0Bz+t1LamGeaAdLxGgIR0C8cAn9vS+hdX2UKGgGR0BwI3NGEwnIaAdLjGgIR0C8cBJ88cMmdX2UKGgGR0BzElnqVyFPaAdLs2gIR0C8cBSaAnUldX2UKGgGR0Bx4nXumaYvaAdLmGgIR0C8cChm5DqodX2UKGgGR0BvkxS5y2hJaAdLlGgIR0C8cC40dilSdX2UKGgGR0BxzKMzdk8SaAdLuWgIR0C8cDSaAnUldX2UKGgGR0ByAo/hVENOaAdLqWgIR0C8cDk0zj3mdX2UKGgGR0Byq3VUdaMaaAdLo2gIR0C8cFYT0xubdX2UKGgGR0BzzkEnssxxaAdLomgIR0C8cGLiEQGwdX2UKGgGR0BzKVe1KGtZaAdLoGgIR0C8cHfMOf/WdX2UKGgGR0A9sGHHmzSkaAdLbWgIR0C8cJXGwRoRdX2UKGgGR0BzoBv/BFd+aAdLmGgIR0C8cM3g9/z8dX2UKGgGR0B0S7dXT3IuaAdLo2gIR0C8cNVotcv/dX2UKGgGR0Bys2fbsWweaAdLm2gIR0C8cOHgccU/dX2UKGgGR0Bx3x5xBE8aaAdLrWgIR0C8cOkl7dBTdX2UKGgGR0By8Ue1a4c4aAdLomgIR0C8cO5xWDHwdX2UKGgGR0BzjUGQjlgdaAdLtWgIR0C8cPKBZpztdX2UKGgGR0ByEBTKkl/paAdLtGgIR0C8cPIsNDtxdX2UKGgGR0By4ia5PM0QaAdLumgIR0C8cO8/yGzsdX2UKGgGR0BwtYwZflZHaAdLmGgIR0C8cPhA8jiXdX2UKGgGR0Bw8U2sJY1YaAdLnmgIR0C8cQO14Pf9dX2UKGgGR0Byc+ucMEzPaAdLnmgIR0C8cS1WbPQfdX2UKGgGR0ByH2JsO5J9aAdLuWgIR0C8cSxK15SndX2UKGgGR0BztQ274BV/aAdLuWgIR0C8cTEF4cFRdX2UKGgGR0Bx/Nq7AckuaAdLsGgIR0C8cVK2rn1WdX2UKGgGR0Bx8mS3b212aAdLs2gIR0C8cWs7ZFoddX2UKGgGR0BzM6ll9SdfaAdLtWgIR0C8cY4gNgBtdX2UKGgGR0BzNiScLBsRaAdLk2gIR0C8cbc3Q2MsdX2UKGgGR0BzP9lrdnCgaAdLtGgIR0C8ccZ0KZ2IdX2UKGgGR0Byj1iG34KyaAdLqWgIR0C8cdDRplBhdX2UKGgGR0BzXhZ2ZApsaAdLtmgIR0C8cdvUe+23dX2UKGgGR0ByXJfTkQwsaAdLrmgIR0C8ceCFXaJzdX2UKGgGR0Byp8hUzbeuaAdLsWgIR0C8ceCl3yI6dX2UKGgGR0BylB6+nIhhaAdLt2gIR0C8cetcv/R3dX2UKGgGR0BxzwTxoZhsaAdLtGgIR0C8ce1mnO0LdX2UKGgGR0By+wWcjJMhaAdLr2gIR0C8cfJrP+n7dX2UKGgGR0B0U/ms/6fraAdL2WgIR0C8cfweii7DdX2UKGgGR0ByaYrpaA4GaAdLnGgIR0C8cgHryDqXdX2UKGgGR0Bw6AffXPJJaAdLn2gIR0C8cgn09QoDdX2UKGgGR0ByZVwXIlt1aAdLhWgIR0C8cgjijtXxdX2UKGgGR0Bz3dn27FsIaAdLxGgIR0C8cjDJ2dNGdX2UKGgGR0BzIsJSiudPaAdLtmgIR0C8cltc8kledX2UKGgGR0Bw4zx5LRKIaAdLkmgIR0C8cnB9b5dodX2UKGgGR0BxaLppvgm7aAdLtGgIR0C8cnhuTA32dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2448, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}