---
license: apache-2.0
base_model: mhenrichsen/danskgpt-tiny
tags:
- generated_from_trainer
model-index:
- name: tiny-chat
results: []
---
[
](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.3.0`
```yaml
base_model: mhenrichsen/danskgpt-tiny
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
#pretraining_dataset: mhenrichsen/terra
datasets:
- path: mhenrichsen/rag-qa-sharegpt
type: sharegpt
conversation: chatml
- path: mhenrichsen/creator
type: sharegpt
conversation: chatml
- path: mhenrichsen/puffin-sharegpt-fix
type: sharegpt
conversation: chatml
- path: mhenrichsen/orcaslim-sharegpt-fix
type: sharegpt
conversation: chatml
- path: mhenrichsen/dansk-tekst-sharegpt
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path:
val_set_size: 0.001
output_dir: ./tiny-chat
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
wandb_project: tiny-danskgpt-chat
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 16
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 2
debug:
deepspeed: deepspeed/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
tokens:
- "<|im_start|>"
```
# tiny-chat
This model is a fine-tuned version of [mhenrichsen/danskgpt-tiny](https://huggingface.co/mhenrichsen/danskgpt-tiny) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7168
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3599 | 0.0 | 1 | 1.4118 |
| 0.7896 | 0.25 | 136 | 0.7813 |
| 0.7339 | 0.5 | 272 | 0.7490 |
| 0.7378 | 0.75 | 408 | 0.7285 |
| 0.7112 | 1.0 | 544 | 0.7146 |
| 0.6377 | 1.23 | 680 | 0.7135 |
| 0.6192 | 1.49 | 816 | 0.7133 |
| 0.5985 | 1.74 | 952 | 0.7073 |
| 0.6067 | 1.99 | 1088 | 0.7026 |
| 0.5139 | 2.22 | 1224 | 0.7167 |
| 0.5099 | 2.47 | 1360 | 0.7193 |
| 0.5217 | 2.72 | 1496 | 0.7168 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0