--- license: apache-2.0 base_model: mhenrichsen/danskgpt-tiny tags: - generated_from_trainer model-index: - name: tiny-chat results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: mhenrichsen/danskgpt-tiny model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: false strict: false #pretraining_dataset: mhenrichsen/terra datasets: - path: mhenrichsen/rag-qa-sharegpt type: sharegpt conversation: chatml - path: mhenrichsen/creator type: sharegpt conversation: chatml - path: mhenrichsen/puffin-sharegpt-fix type: sharegpt conversation: chatml - path: mhenrichsen/orcaslim-sharegpt-fix type: sharegpt conversation: chatml - path: mhenrichsen/dansk-tekst-sharegpt type: sharegpt conversation: chatml chat_template: chatml dataset_prepared_path: val_set_size: 0.001 output_dir: ./tiny-chat sequence_len: 2048 sample_packing: true pad_to_sequence_len: true wandb_project: tiny-danskgpt-chat wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 16 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00005 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 2 debug: deepspeed: deepspeed/zero2.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" tokens: - "<|im_start|>" ```

# tiny-chat This model is a fine-tuned version of [mhenrichsen/danskgpt-tiny](https://huggingface.co/mhenrichsen/danskgpt-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3599 | 0.0 | 1 | 1.4118 | | 0.7896 | 0.25 | 136 | 0.7813 | | 0.7339 | 0.5 | 272 | 0.7490 | | 0.7378 | 0.75 | 408 | 0.7285 | | 0.7112 | 1.0 | 544 | 0.7146 | | 0.6377 | 1.23 | 680 | 0.7135 | | 0.6192 | 1.49 | 816 | 0.7133 | | 0.5985 | 1.74 | 952 | 0.7073 | | 0.6067 | 1.99 | 1088 | 0.7026 | | 0.5139 | 2.22 | 1224 | 0.7167 | | 0.5099 | 2.47 | 1360 | 0.7193 | | 0.5217 | 2.72 | 1496 | 0.7168 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0