micaebe commited on
Commit
7892031
1 Parent(s): 6db2e7f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -196
README.md CHANGED
@@ -1,201 +1,85 @@
1
  ---
2
- library_name: transformers
 
 
 
 
 
3
  tags:
 
4
  - trl
5
  - sft
6
- ---
7
-
8
- # Model Card for Model ID
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
-
13
-
14
- ## Model Details
15
-
16
- ### Model Description
17
-
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
- ### Direct Use
43
-
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
-
46
- [More Information Needed]
47
-
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
-
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
-
80
- ### Training Data
81
-
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- ## Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Contact
200
 
201
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct/blob/main/LICENSE
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
8
  tags:
9
+ - chat
10
  - trl
11
  - sft
12
+ - math
13
+ library_name: transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ model-index:
16
+ - name: Qwen2.5-1.5B-Instruct-QwQ
17
+ results:
18
+ - task:
19
+ type: text-generation
20
+ dataset:
21
+ name: GSM8k
22
+ type: gsm8k
23
+ metrics:
24
+ - name: pass@4
25
+ type: pass@4
26
+ value: 85.15
27
+ verified: false
28
+ ---
29
+ # Qwen2.5-1.5B-Instruct-QwQ
30
+
31
+ ## Introduction
32
+
33
+ Qwen2.5-QwQ is a fine-tuned model based on Qwen2.5-1.5B-Instruct. It was fine-tuned on roughly 20k samples from QwQ-32B-Preview. Compared to Qwen2.5-1.5B-Instruct, this fine-tuned model seems more performant in mathematics contexts and general reasoning. Also it shows some capabilities of self-correction, altough it seems a bit limited because of the size (bigger models seem to learn self-correction more easily, e.g. the 3B & 7B version show much better self-correction abilities).
34
+
35
+ **This repo contains the instruction-tuned 1.5B Qwen2.5 model fine-tuned on QwQ reasoning chains**, which has the following features:
36
+ - Type: Causal Language Models
37
+ - Training Stage: Pretraining & Post-training
38
+ - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
39
+ - Number of Parameters: 1.54B
40
+ - Number of Paramaters (Non-Embedding): 1.31B
41
+ - Number of Layers: 28
42
+ - Number of Attention Heads (GQA): 12 for Q and 2 for KV
43
+ - Context Length: Full 32,768 tokens and generation 8192 tokens
44
+
45
+
46
+ ## Quickstart
47
+
48
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
49
+
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+
53
+ model_name = "micaebe/Qwen2.5-1.5B-Instruct-QwQ"
54
+
55
+ model = AutoModelForCausalLM.from_pretrained(
56
+ model_name,
57
+ torch_dtype="auto",
58
+ device_map="auto"
59
+ )
60
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
61
+
62
+ prompt = "Give me a short introduction to large language model."
63
+ messages = [
64
+ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
65
+ {"role": "user", "content": prompt}
66
+ ]
67
+ text = tokenizer.apply_chat_template(
68
+ messages,
69
+ tokenize=False,
70
+ add_generation_prompt=True
71
+ )
72
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
73
+
74
+ generated_ids = model.generate(
75
+ **model_inputs,
76
+ max_new_tokens=512
77
+ )
78
+ generated_ids = [
79
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
80
+ ]
81
+
82
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
83
+ ```
84
+
85
+ Disclaimer: GSM scores are currently only fro the first 20% of the dataset. Will run the tests on all samples and adjust the score.