micdestefano
commited on
Commit
·
bf0bcc1
1
Parent(s):
e87beef
Update README.md
Browse files
README.md
CHANGED
@@ -22,48 +22,49 @@ model-index:
|
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
'
|
40 |
-
'
|
41 |
-
'
|
42 |
-
'
|
43 |
-
'
|
44 |
-
'
|
45 |
-
'
|
46 |
-
'
|
47 |
-
'
|
48 |
-
'
|
49 |
-
'
|
50 |
-
'
|
51 |
-
'
|
52 |
-
'
|
53 |
-
'
|
54 |
-
'
|
55 |
-
'
|
56 |
-
'
|
57 |
-
'
|
58 |
-
'
|
59 |
-
'
|
60 |
-
'
|
61 |
-
'
|
62 |
-
'
|
63 |
-
'
|
64 |
-
'
|
65 |
-
'
|
66 |
-
'
|
67 |
-
'
|
68 |
-
|
69 |
-
|
|
|
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
+
# PPO Agent Playing LunarLander-v2
|
26 |
|
27 |
+
This is a trained model of a PPO agent playing LunarLander-v2.
|
28 |
+
The agent has been trained with a custom PPO implementation inspired to
|
29 |
+
[a tutorial by Costa Huang](https://www.youtube.com/watch?v=MEt6rrxH8W4).
|
30 |
|
31 |
+
This work is related to Unit 8, part 1 of the Hugging Face Deep RL course. I had to slightly modify
|
32 |
+
some pieces of the provided notebook, because I used gymnasium and not gym.
|
33 |
+
Furthermore, the PPO implementation is available on GitHub, here:
|
34 |
+
[https://github.com/micdestefano/micppo](https://github.com/micdestefano/micppo).
|
35 |
|
36 |
+
# Hyperparameters
|
37 |
+
```python
|
38 |
+
{
|
39 |
+
'exp_name': 'micppo'
|
40 |
+
'gym_id': 'LunarLander-v2'
|
41 |
+
'learning_rate': 0.00025
|
42 |
+
'min_learning_rate_ratio': 0.01
|
43 |
+
'seed': 1
|
44 |
+
'total_timesteps': 10000000
|
45 |
+
'torch_not_deterministic': False
|
46 |
+
'no_cuda': False
|
47 |
+
'capture_video': True
|
48 |
+
'hidden_size': 256
|
49 |
+
'num_hidden_layers': 3
|
50 |
+
'activation': 'leaky-relu'
|
51 |
+
'num_checkpoints': 4
|
52 |
+
'num_envs': 8
|
53 |
+
'num_steps': 2048
|
54 |
+
'no_lr_annealing': False
|
55 |
+
'no_gae': False
|
56 |
+
'gamma': 0.99
|
57 |
+
'gae_lambda': 0.95
|
58 |
+
'num_minibatches': 16
|
59 |
+
'num_update_epochs': 32
|
60 |
+
'no_advantage_normalization': False
|
61 |
+
'clip_coef': 0.2
|
62 |
+
'no_value_loss_clip': False
|
63 |
+
'ent_coef': 0.01
|
64 |
+
'vf_coef': 0.5
|
65 |
+
'max_grad_norm': 0.5
|
66 |
+
'target_kl': None
|
67 |
+
'batch_size': 16384
|
68 |
+
'minibatch_size': 1024
|
69 |
+
}
|
70 |
+
```
|