michaeljcliao commited on
Commit
1da0bb7
1 Parent(s): d897750

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -3
README.md CHANGED
@@ -1,3 +1,54 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ base_model: naver-clova-ix/donut-base
6
+ datasets:
7
+ - imagefolder
8
+ model-index:
9
+ - name: invoice_extraction_20240808_base_non_0_retrain
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # donut-base-invoice-resize_splitbydate_roc_240401
17
+
18
+ This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset.
19
+
20
+ ## Model description
21
+
22
+ Trained from Donut base model (naver-clova-ix/donut-base) with non-type-0 invoice data with original Gregorian date instead of ROC date with Chinese characters
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ Train data: 281 samples of non type 0 images with invoice date between 2024/07/01 and 2024/07/15
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 2e-06
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 2
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - num_epochs: 20
44
+
45
+ ### Training results
46
+
47
+ TrainOutput(global_step=2420, training_loss=1.0457300442309418, metrics={'train_runtime': 9844.8278, 'train_samples_per_second': 0.49, 'train_steps_per_second': 0.246, 'total_flos': 6.47612717723136e+18, 'train_loss': 1.0457300442309418, 'epoch': 20.0})
48
+
49
+ ### Framework versions
50
+
51
+ - Transformers 4.38.2
52
+ - Pytorch 2.2.1+cu121
53
+ - Datasets 2.14.5
54
+ - Tokenizers 0.15.2