File size: 1,990 Bytes
0374e94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
base_model: runwayml/stable-diffusion-v1-5
library_name: diffusers
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Text-to-image finetuning - michaelyli/sd-dsprites-incorrect_counterfactual_coupled_factors_init_stable-diffusion-v1-5
This pipeline was finetuned from **runwayml/stable-diffusion-v1-5** on the **michaelyli/dsprites-coupled-under-specified** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A square.', 'A ellipse.', 'A heart.']:
![val_imgs_grid](./val_imgs_grid.png)
## Pipeline usage
You can use the pipeline like so:
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("michaelyli/sd-dsprites-incorrect_counterfactual_coupled_factors_init_stable-diffusion-v1-5", torch_dtype=torch.float16)
prompt = "A square."
image = pipeline(prompt).images[0]
image.save("my_image.png")
```
## Training info
These are the key hyperparameters used during training:
* Epochs: 1
* Learning rate: 1e-05
* Batch size: 100
* Gradient accumulation steps: 1
* Image resolution: 64
* Mixed-precision: fp16
More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://microsoft-research.wandb.io/t-michaelli/sd-dsprites-incorrect_counterfactual_coupled_factors_init_stable-diffusion-v1-5/runs/ul2ecoik).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |