shengz commited on
Commit
655b6bd
·
1 Parent(s): d3d9d71

Delete usage/README.md

Browse files
Files changed (1) hide show
  1. usage/README.md +0 -43
usage/README.md DELETED
@@ -1,43 +0,0 @@
1
- # Knowledge-Rich Self-Supervision (KRISS) for Biomedical Entity Linking
2
-
3
- Usage code for the entity linking approach described in the following paper:
4
- ```bibtex
5
- @article{kriss,
6
- author = {Sheng Zhang, Hao Cheng, Shikhar Vashishth, Cliff Wong, Jinfeng Xiao, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, Hoifung Poon},
7
- title = {Knowledge-Rich Self-Supervision for Biomedical Entity Linking},
8
- year = {2021},
9
- url = {https://arxiv.org/abs/2112.07887},
10
- eprinttype = {arXiv},
11
- eprint = {2112.07887},
12
- }
13
- ```
14
- [https://arxiv.org/pdf/2112.07887.pdf](https://arxiv.org/pdf/2112.07887.pdf)
15
-
16
- ## Usage of KRISS for Entity Linking
17
-
18
- Here, we use the [MedMentions](https://github.com/chanzuckerberg/MedMentions) data to show you how to 1) generate prototype embeddings, and 2) run entity linking.
19
-
20
- (We are currently unable to release the self-supervised mention examples, because they requires UMLS and PubMed licenses.)
21
-
22
-
23
- ### 1. Create conda environment and install requirements
24
- ```bash
25
- conda create -n kriss -y python=3.8 && conda activate kriss
26
- pip install -r requirements.txt
27
- ```
28
-
29
- ### 2. Download the MedMentions dataset
30
-
31
- ```bash
32
- git clone https://github.com/chanzuckerberg/MedMentions.git
33
- ```
34
-
35
- ### 3. Generate prototype embeddings
36
- ```bash
37
- python generate_prototypes.py
38
- ```
39
-
40
- ### 4. Run entity linking
41
- ```bash
42
- python run_entity_linking.py
43
- ```