File size: 3,288 Bytes
02a9971
4d6e70c
02a9971
 
 
4d6e70c
02a9971
 
 
 
 
 
 
 
 
 
 
 
b2129d4
02a9971
 
 
 
 
 
b2129d4
02a9971
4d9496a
 
c998f9d
2772bce
02a9971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ead775
02a9971
 
 
c998f9d
 
02a9971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language: multilingual
tags: 
  - deberta
  - deberta-v3
  - mdeberta
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit
---

## DeBERTa: Decoding-enhanced BERT with Disentangled Attention

[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. 

Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.

In DeBERTa V3, we replaced the MLM objective with the RTD(Replaced Token Detection) objective introduced by ELECTRA for pre-training, as well as some innovations to be introduced in our upcoming paper. Compared to DeBERTa-V2,  our V3 version significantly improves the model performance in downstream tasks.  You can find a simple introduction about the model from the appendix A11 in our original [paper](https://arxiv.org/abs/2006.03654),  but we will provide more details in a separate write-up.

mDeBERTa is the multilingual version of DeBERTa with the same model structure but was trained on the CC100 multilingual data.

The mDeBERTa V3 base model comes with 12 layers and a hidden size of 768. Its total parameter number is 280M since we use a vocabulary containing 250K tokens which introduce 190M parameters in the Embedding layer.  This model was trained using the 2.5T CC100 data as XLM-R.


#### Fine-tuning on NLU tasks

We present the dev results on XNLI with zero-shot crosslingual transfer setting, i.e. training with english data only, test on other languages.

| Model        |avg | en |  fr| es  | de  | el  | bg  | ru  |tr   |ar   |vi   | th  | zh | hi  | sw  | ur  | 
|--------------| ----|----|----|---- |--   |--   |--   | --  |--   |--   |--   | --  | -- | --  | --  | --  |
| XLM-R-base   |76.2 |85.8|79.7|80.7 |78.7 |77.5 |79.6 |78.1 |74.2 |73.8 |76.5 |74.6 |76.7| 72.4| 66.5| 68.3|
| mDeBERTa-base|**79.8**+/-0.2|**88.2**|**82.6**|**84.4** |**82.7** |**82.3** |**82.4** |**80.8** |**79.5** |**78.5** |**78.1** |**76.4** |**79.5**| **75.9**| **73.9**| **72.4**|

#### Fine-tuning with HF transformers

```bash
#!/bin/bash

cd transformers/examples/pytorch/text-classification/

pip install datasets

output_dir="ds_results"

num_gpus=8

batch_size=4

python -m torch.distributed.launch --nproc_per_node=${num_gpus} \
  run_xnli.py \
  --model_name_or_path microsoft/mdeberta-v3-base \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --train_language en \
  --language en \
  --evaluation_strategy steps \
  --max_seq_length 256 \
  --warmup_steps 3000 \
  --per_device_train_batch_size ${batch_size} \
  --learning_rate 2e-5 \
  --num_train_epochs 6 \
  --output_dir $output_dir \
  --overwrite_output_dir \
  --logging_steps 1000 \
  --logging_dir $output_dir

```

### Citation

If you find DeBERTa useful for your work, please cite the following paper:

``` latex
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
```