File size: 2,546 Bytes
64c585e 89785ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
language: en
tags:
- tapex
datasets:
- tab_fact
license: mit
---
# TAPEX (base-sized model)
TAPEX was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found [here](https://github.com/microsoft/Table-Pretraining).
## Model description
TAPEX (**Ta**ble **P**re-training via **Ex**ecution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with *table reasoning* skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries.
TAPEX is based on the BART architecture, the transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder.
This model is the `tapex-base` model fine-tuned on the [Tabfact](https://huggingface.co/datasets/tab_fact) dataset.
## Intended Uses
You can use the model for table fact verficiation.
### How to Use
Here is how to use this model in transformers:
```python
from transformers import TapexTokenizer, BartForSequenceClassification
import pandas as pd
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base-finetuned-tabfact")
model = BartForSequenceClassification.from_pretrained("microsoft/tapex-base-finetuned-tabfact")
data = {
"year": [1896, 1900, 1904, 2004, 2008, 2012],
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
}
table = pd.DataFrame.from_dict(data)
# tapex accepts uncased input since it is pre-trained on the uncased corpus
query = "beijing hosts the olympic games in 2012"
encoding = tokenizer(table=table, query=query, return_tensors="pt")
outputs = model(**encoding)
output_id = int(outputs.logits[0].argmax(dim=0))
print(model.config.id2label[output_id])
# Refused
```
### How to Eval
Please find the eval script [here](https://github.com/SivilTaram/transformers/tree/add_tapex_bis/examples/research_projects/tapex).
### BibTeX entry and citation info
```bibtex
@inproceedings{
liu2022tapex,
title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor},
author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=O50443AsCP}
}
``` |