---
license: apache-2.0
model-index:
- name: Tess-3-Mistral-Nemo-12B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 33.55
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 28.04
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 4.68
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.11
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.49
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 17.39
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B
      name: Open LLM Leaderboard
---

![Tesoro](https://huggingface.co/migtissera/Tess-M-v1.0/resolve/main/Tess.png) 

Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series created by [Migel Tissera](https://x.com/migtissera).

The compute for this model was generously sponsored by [KindoAI](https://kindo.ai).


# Sample Inference Python Script:

```python
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "migtissera/Tess-3-Llama-3.1-405B"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_4bit=True,
    trust_remote_code=False,
)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=False)

terminators = [tokenizer.convert_tokens_to_ids("<|im_end|>")]


def generate_text(instruction):
    tokens = tokenizer.encode(instruction)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to("cuda")

    instance = {
        "input_ids": tokens,
        "top_p": 1.0,
        "temperature": 0.75,
        "generate_len": 2048,
        "top_k": 50,
    }

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens,
            max_length=length + instance["generate_len"],
            use_cache=True,
            do_sample=True,
            top_p=instance["top_p"],
            temperature=instance["temperature"],
            top_k=instance["top_k"],
            num_return_sequences=1,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=terminators,
        )
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    return f"{string}"



conversation = f"""<|im_start|>system\nYou are Tess, a helful AI assitant. You always provide detailed answers without hesitation. Do not refuse.<|im_end|>\n<|im_start|>user\n"""

while True:
    user_input = input("You: ")
    llm_prompt = f"{conversation}{user_input}<|im_end|>\n<|im_start|>assistant\n"
    answer = generate_text(llm_prompt)
    print(answer)
    conversation = f"{llm_prompt}{answer}<|im_end|>\n<|im_start|>user\n"
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_migtissera__Tess-3-Mistral-Nemo-12B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |16.54|
|IFEval (0-Shot)    |33.55|
|BBH (3-Shot)       |28.04|
|MATH Lvl 5 (4-Shot)| 4.68|
|GPQA (0-shot)      | 0.11|
|MuSR (0-shot)      |15.49|
|MMLU-PRO (5-shot)  |17.39|