migtissera
commited on
Commit
•
9099977
1
Parent(s):
564e6fe
Upload 3 files
Browse files
Evals/Tess-v2.5-Qwen2-72B-agieval_nous.json
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"agieval_nous": {
|
4 |
+
"acc_norm,none": 0.5357423409269442,
|
5 |
+
"acc_norm_stderr,none": 0.00952110343229611,
|
6 |
+
"acc,none": 0.6233307148468186,
|
7 |
+
"acc_stderr,none": 0.009151821236525831,
|
8 |
+
"alias": "agieval_nous"
|
9 |
+
},
|
10 |
+
"agieval_aqua_rat": {
|
11 |
+
"acc,none": 0.5511811023622047,
|
12 |
+
"acc_stderr,none": 0.03126961011656295,
|
13 |
+
"acc_norm,none": 0.5118110236220472,
|
14 |
+
"acc_norm_stderr,none": 0.031425959141896394,
|
15 |
+
"alias": " - agieval_aqua_rat"
|
16 |
+
},
|
17 |
+
"agieval_logiqa_en": {
|
18 |
+
"acc,none": 0.554531490015361,
|
19 |
+
"acc_stderr,none": 0.019494627133439985,
|
20 |
+
"acc_norm,none": 0.46236559139784944,
|
21 |
+
"acc_norm_stderr,none": 0.019555980839597826,
|
22 |
+
"alias": " - agieval_logiqa_en"
|
23 |
+
},
|
24 |
+
"agieval_lsat_ar": {
|
25 |
+
"acc,none": 0.26956521739130435,
|
26 |
+
"acc_stderr,none": 0.02932276422894952,
|
27 |
+
"acc_norm,none": 0.2565217391304348,
|
28 |
+
"acc_norm_stderr,none": 0.028858814315305643,
|
29 |
+
"alias": " - agieval_lsat_ar"
|
30 |
+
},
|
31 |
+
"agieval_lsat_lr": {
|
32 |
+
"acc,none": 0.7,
|
33 |
+
"acc_stderr,none": 0.020311909655921973,
|
34 |
+
"acc_norm,none": 0.5764705882352941,
|
35 |
+
"acc_norm_stderr,none": 0.021901379648792133,
|
36 |
+
"alias": " - agieval_lsat_lr"
|
37 |
+
},
|
38 |
+
"agieval_lsat_rc": {
|
39 |
+
"acc,none": 0.7881040892193308,
|
40 |
+
"acc_stderr,none": 0.02496236224822418,
|
41 |
+
"acc_norm,none": 0.6765799256505576,
|
42 |
+
"acc_norm_stderr,none": 0.028574302844503813,
|
43 |
+
"alias": " - agieval_lsat_rc"
|
44 |
+
},
|
45 |
+
"agieval_sat_en": {
|
46 |
+
"acc,none": 0.8689320388349514,
|
47 |
+
"acc_stderr,none": 0.02357025313368066,
|
48 |
+
"acc_norm,none": 0.8446601941747572,
|
49 |
+
"acc_norm_stderr,none": 0.02529912276040303,
|
50 |
+
"alias": " - agieval_sat_en"
|
51 |
+
},
|
52 |
+
"agieval_sat_en_without_passage": {
|
53 |
+
"acc,none": 0.616504854368932,
|
54 |
+
"acc_stderr,none": 0.033960279445866416,
|
55 |
+
"acc_norm,none": 0.5194174757281553,
|
56 |
+
"acc_norm_stderr,none": 0.03489517135066013,
|
57 |
+
"alias": " - agieval_sat_en_without_passage"
|
58 |
+
},
|
59 |
+
"agieval_sat_math": {
|
60 |
+
"acc,none": 0.6772727272727272,
|
61 |
+
"acc_stderr,none": 0.03159203270502094,
|
62 |
+
"acc_norm,none": 0.5318181818181819,
|
63 |
+
"acc_norm_stderr,none": 0.03371838809107287,
|
64 |
+
"alias": " - agieval_sat_math"
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"groups": {
|
68 |
+
"agieval_nous": {
|
69 |
+
"acc_norm,none": 0.5357423409269442,
|
70 |
+
"acc_norm_stderr,none": 0.00952110343229611,
|
71 |
+
"acc,none": 0.6233307148468186,
|
72 |
+
"acc_stderr,none": 0.009151821236525831,
|
73 |
+
"alias": "agieval_nous"
|
74 |
+
}
|
75 |
+
},
|
76 |
+
"group_subtasks": {
|
77 |
+
"agieval_nous": [
|
78 |
+
"agieval_sat_en",
|
79 |
+
"agieval_lsat_ar",
|
80 |
+
"agieval_sat_en_without_passage",
|
81 |
+
"agieval_aqua_rat",
|
82 |
+
"agieval_logiqa_en",
|
83 |
+
"agieval_sat_math",
|
84 |
+
"agieval_lsat_rc",
|
85 |
+
"agieval_lsat_lr"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
"configs": {
|
89 |
+
"agieval_aqua_rat": {
|
90 |
+
"task": "agieval_aqua_rat",
|
91 |
+
"group": [
|
92 |
+
"agieval",
|
93 |
+
"agieval_en",
|
94 |
+
"agieval_nous"
|
95 |
+
],
|
96 |
+
"dataset_path": "hails/agieval-aqua-rat",
|
97 |
+
"test_split": "test",
|
98 |
+
"doc_to_text": "{{query}}",
|
99 |
+
"doc_to_target": "{{gold}}",
|
100 |
+
"doc_to_choice": "{{choices}}",
|
101 |
+
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
|
102 |
+
"description": "",
|
103 |
+
"target_delimiter": " ",
|
104 |
+
"fewshot_delimiter": "\n\n",
|
105 |
+
"num_fewshot": 0,
|
106 |
+
"metric_list": [
|
107 |
+
{
|
108 |
+
"metric": "acc",
|
109 |
+
"aggregation": "mean",
|
110 |
+
"higher_is_better": true
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"metric": "acc_norm",
|
114 |
+
"aggregation": "mean",
|
115 |
+
"higher_is_better": true
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"output_type": "multiple_choice",
|
119 |
+
"repeats": 1,
|
120 |
+
"should_decontaminate": false,
|
121 |
+
"metadata": {
|
122 |
+
"version": 1.0
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"agieval_logiqa_en": {
|
126 |
+
"task": "agieval_logiqa_en",
|
127 |
+
"group": [
|
128 |
+
"agieval",
|
129 |
+
"agieval_nous",
|
130 |
+
"agieval_en"
|
131 |
+
],
|
132 |
+
"dataset_path": "hails/agieval-logiqa-en",
|
133 |
+
"test_split": "test",
|
134 |
+
"doc_to_text": "{{query}}",
|
135 |
+
"doc_to_target": "{{gold}}",
|
136 |
+
"doc_to_choice": "{{choices}}",
|
137 |
+
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
|
138 |
+
"description": "",
|
139 |
+
"target_delimiter": " ",
|
140 |
+
"fewshot_delimiter": "\n\n",
|
141 |
+
"num_fewshot": 0,
|
142 |
+
"metric_list": [
|
143 |
+
{
|
144 |
+
"metric": "acc",
|
145 |
+
"aggregation": "mean",
|
146 |
+
"higher_is_better": true
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"metric": "acc_norm",
|
150 |
+
"aggregation": "mean",
|
151 |
+
"higher_is_better": true
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"output_type": "multiple_choice",
|
155 |
+
"repeats": 1,
|
156 |
+
"should_decontaminate": false,
|
157 |
+
"metadata": {
|
158 |
+
"version": 1.0
|
159 |
+
}
|
160 |
+
},
|
161 |
+
"agieval_lsat_ar": {
|
162 |
+
"task": "agieval_lsat_ar",
|
163 |
+
"group": [
|
164 |
+
"agieval",
|
165 |
+
"agieval_nous",
|
166 |
+
"agieval_en"
|
167 |
+
],
|
168 |
+
"dataset_path": "hails/agieval-lsat-ar",
|
169 |
+
"test_split": "test",
|
170 |
+
"doc_to_text": "{{query}}",
|
171 |
+
"doc_to_target": "{{gold}}",
|
172 |
+
"doc_to_choice": "{{choices}}",
|
173 |
+
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
|
174 |
+
"description": "",
|
175 |
+
"target_delimiter": " ",
|
176 |
+
"fewshot_delimiter": "\n\n",
|
177 |
+
"num_fewshot": 0,
|
178 |
+
"metric_list": [
|
179 |
+
{
|
180 |
+
"metric": "acc",
|
181 |
+
"aggregation": "mean",
|
182 |
+
"higher_is_better": true
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"metric": "acc_norm",
|
186 |
+
"aggregation": "mean",
|
187 |
+
"higher_is_better": true
|
188 |
+
}
|
189 |
+
],
|
190 |
+
"output_type": "multiple_choice",
|
191 |
+
"repeats": 1,
|
192 |
+
"should_decontaminate": false,
|
193 |
+
"metadata": {
|
194 |
+
"version": 1.0
|
195 |
+
}
|
196 |
+
},
|
197 |
+
"agieval_lsat_lr": {
|
198 |
+
"task": "agieval_lsat_lr",
|
199 |
+
"group": [
|
200 |
+
"agieval",
|
201 |
+
"agieval_nous",
|
202 |
+
"agieval_en"
|
203 |
+
],
|
204 |
+
"dataset_path": "hails/agieval-lsat-lr",
|
205 |
+
"test_split": "test",
|
206 |
+
"doc_to_text": "{{query}}",
|
207 |
+
"doc_to_target": "{{gold}}",
|
208 |
+
"doc_to_choice": "{{choices}}",
|
209 |
+
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
|
210 |
+
"description": "",
|
211 |
+
"target_delimiter": " ",
|
212 |
+
"fewshot_delimiter": "\n\n",
|
213 |
+
"num_fewshot": 0,
|
214 |
+
"metric_list": [
|
215 |
+
{
|
216 |
+
"metric": "acc",
|
217 |
+
"aggregation": "mean",
|
218 |
+
"higher_is_better": true
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"metric": "acc_norm",
|
222 |
+
"aggregation": "mean",
|
223 |
+
"higher_is_better": true
|
224 |
+
}
|
225 |
+
],
|
226 |
+
"output_type": "multiple_choice",
|
227 |
+
"repeats": 1,
|
228 |
+
"should_decontaminate": false,
|
229 |
+
"metadata": {
|
230 |
+
"version": 1.0
|
231 |
+
}
|
232 |
+
},
|
233 |
+
"agieval_lsat_rc": {
|
234 |
+
"task": "agieval_lsat_rc",
|
235 |
+
"group": [
|
236 |
+
"agieval",
|
237 |
+
"agieval_nous",
|
238 |
+
"agieval_en"
|
239 |
+
],
|
240 |
+
"dataset_path": "hails/agieval-lsat-rc",
|
241 |
+
"test_split": "test",
|
242 |
+
"doc_to_text": "{{query}}",
|
243 |
+
"doc_to_target": "{{gold}}",
|
244 |
+
"doc_to_choice": "{{choices}}",
|
245 |
+
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
|
246 |
+
"description": "",
|
247 |
+
"target_delimiter": " ",
|
248 |
+
"fewshot_delimiter": "\n\n",
|
249 |
+
"num_fewshot": 0,
|
250 |
+
"metric_list": [
|
251 |
+
{
|
252 |
+
"metric": "acc",
|
253 |
+
"aggregation": "mean",
|
254 |
+
"higher_is_better": true
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"metric": "acc_norm",
|
258 |
+
"aggregation": "mean",
|
259 |
+
"higher_is_better": true
|
260 |
+
}
|
261 |
+
],
|
262 |
+
"output_type": "multiple_choice",
|
263 |
+
"repeats": 1,
|
264 |
+
"should_decontaminate": false,
|
265 |
+
"metadata": {
|
266 |
+
"version": 1.0
|
267 |
+
}
|
268 |
+
},
|
269 |
+
"agieval_sat_en": {
|
270 |
+
"task": "agieval_sat_en",
|
271 |
+
"group": [
|
272 |
+
"agieval",
|
273 |
+
"agieval_nous",
|
274 |
+
"agieval_en"
|
275 |
+
],
|
276 |
+
"dataset_path": "hails/agieval-sat-en",
|
277 |
+
"test_split": "test",
|
278 |
+
"doc_to_text": "{{query}}",
|
279 |
+
"doc_to_target": "{{gold}}",
|
280 |
+
"doc_to_choice": "{{choices}}",
|
281 |
+
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
|
282 |
+
"description": "",
|
283 |
+
"target_delimiter": " ",
|
284 |
+
"fewshot_delimiter": "\n\n",
|
285 |
+
"num_fewshot": 0,
|
286 |
+
"metric_list": [
|
287 |
+
{
|
288 |
+
"metric": "acc",
|
289 |
+
"aggregation": "mean",
|
290 |
+
"higher_is_better": true
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"metric": "acc_norm",
|
294 |
+
"aggregation": "mean",
|
295 |
+
"higher_is_better": true
|
296 |
+
}
|
297 |
+
],
|
298 |
+
"output_type": "multiple_choice",
|
299 |
+
"repeats": 1,
|
300 |
+
"should_decontaminate": false,
|
301 |
+
"metadata": {
|
302 |
+
"version": 1.0
|
303 |
+
}
|
304 |
+
},
|
305 |
+
"agieval_sat_en_without_passage": {
|
306 |
+
"task": "agieval_sat_en_without_passage",
|
307 |
+
"group": [
|
308 |
+
"agieval",
|
309 |
+
"agieval_nous",
|
310 |
+
"agieval_en"
|
311 |
+
],
|
312 |
+
"dataset_path": "hails/agieval-sat-en-without-passage",
|
313 |
+
"test_split": "test",
|
314 |
+
"doc_to_text": "{{query}}",
|
315 |
+
"doc_to_target": "{{gold}}",
|
316 |
+
"doc_to_choice": "{{choices}}",
|
317 |
+
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
|
318 |
+
"description": "",
|
319 |
+
"target_delimiter": " ",
|
320 |
+
"fewshot_delimiter": "\n\n",
|
321 |
+
"num_fewshot": 0,
|
322 |
+
"metric_list": [
|
323 |
+
{
|
324 |
+
"metric": "acc",
|
325 |
+
"aggregation": "mean",
|
326 |
+
"higher_is_better": true
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"metric": "acc_norm",
|
330 |
+
"aggregation": "mean",
|
331 |
+
"higher_is_better": true
|
332 |
+
}
|
333 |
+
],
|
334 |
+
"output_type": "multiple_choice",
|
335 |
+
"repeats": 1,
|
336 |
+
"should_decontaminate": false,
|
337 |
+
"metadata": {
|
338 |
+
"version": 1.0
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"agieval_sat_math": {
|
342 |
+
"task": "agieval_sat_math",
|
343 |
+
"group": [
|
344 |
+
"agieval",
|
345 |
+
"agieval_nous",
|
346 |
+
"agieval_en"
|
347 |
+
],
|
348 |
+
"dataset_path": "hails/agieval-sat-math",
|
349 |
+
"test_split": "test",
|
350 |
+
"doc_to_text": "{{query}}",
|
351 |
+
"doc_to_target": "{{gold}}",
|
352 |
+
"doc_to_choice": "{{choices}}",
|
353 |
+
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
|
354 |
+
"description": "",
|
355 |
+
"target_delimiter": " ",
|
356 |
+
"fewshot_delimiter": "\n\n",
|
357 |
+
"num_fewshot": 0,
|
358 |
+
"metric_list": [
|
359 |
+
{
|
360 |
+
"metric": "acc",
|
361 |
+
"aggregation": "mean",
|
362 |
+
"higher_is_better": true
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"metric": "acc_norm",
|
366 |
+
"aggregation": "mean",
|
367 |
+
"higher_is_better": true
|
368 |
+
}
|
369 |
+
],
|
370 |
+
"output_type": "multiple_choice",
|
371 |
+
"repeats": 1,
|
372 |
+
"should_decontaminate": false,
|
373 |
+
"metadata": {
|
374 |
+
"version": 1.0
|
375 |
+
}
|
376 |
+
}
|
377 |
+
},
|
378 |
+
"versions": {
|
379 |
+
"agieval_aqua_rat": 1.0,
|
380 |
+
"agieval_logiqa_en": 1.0,
|
381 |
+
"agieval_lsat_ar": 1.0,
|
382 |
+
"agieval_lsat_lr": 1.0,
|
383 |
+
"agieval_lsat_rc": 1.0,
|
384 |
+
"agieval_sat_en": 1.0,
|
385 |
+
"agieval_sat_en_without_passage": 1.0,
|
386 |
+
"agieval_sat_math": 1.0
|
387 |
+
},
|
388 |
+
"n-shot": {
|
389 |
+
"agieval_aqua_rat": 0,
|
390 |
+
"agieval_logiqa_en": 0,
|
391 |
+
"agieval_lsat_ar": 0,
|
392 |
+
"agieval_lsat_lr": 0,
|
393 |
+
"agieval_lsat_rc": 0,
|
394 |
+
"agieval_nous": 0,
|
395 |
+
"agieval_sat_en": 0,
|
396 |
+
"agieval_sat_en_without_passage": 0,
|
397 |
+
"agieval_sat_math": 0
|
398 |
+
},
|
399 |
+
"higher_is_better": {
|
400 |
+
"agieval_aqua_rat": {
|
401 |
+
"acc": true,
|
402 |
+
"acc_norm": true
|
403 |
+
},
|
404 |
+
"agieval_logiqa_en": {
|
405 |
+
"acc": true,
|
406 |
+
"acc_norm": true
|
407 |
+
},
|
408 |
+
"agieval_lsat_ar": {
|
409 |
+
"acc": true,
|
410 |
+
"acc_norm": true
|
411 |
+
},
|
412 |
+
"agieval_lsat_lr": {
|
413 |
+
"acc": true,
|
414 |
+
"acc_norm": true
|
415 |
+
},
|
416 |
+
"agieval_lsat_rc": {
|
417 |
+
"acc": true,
|
418 |
+
"acc_norm": true
|
419 |
+
},
|
420 |
+
"agieval_nous": {
|
421 |
+
"acc": true,
|
422 |
+
"acc_norm": true
|
423 |
+
},
|
424 |
+
"agieval_sat_en": {
|
425 |
+
"acc": true,
|
426 |
+
"acc_norm": true
|
427 |
+
},
|
428 |
+
"agieval_sat_en_without_passage": {
|
429 |
+
"acc": true,
|
430 |
+
"acc_norm": true
|
431 |
+
},
|
432 |
+
"agieval_sat_math": {
|
433 |
+
"acc": true,
|
434 |
+
"acc_norm": true
|
435 |
+
}
|
436 |
+
},
|
437 |
+
"n-samples": {
|
438 |
+
"agieval_sat_en": {
|
439 |
+
"original": 206,
|
440 |
+
"effective": 206
|
441 |
+
},
|
442 |
+
"agieval_lsat_ar": {
|
443 |
+
"original": 230,
|
444 |
+
"effective": 230
|
445 |
+
},
|
446 |
+
"agieval_sat_en_without_passage": {
|
447 |
+
"original": 206,
|
448 |
+
"effective": 206
|
449 |
+
},
|
450 |
+
"agieval_aqua_rat": {
|
451 |
+
"original": 254,
|
452 |
+
"effective": 254
|
453 |
+
},
|
454 |
+
"agieval_logiqa_en": {
|
455 |
+
"original": 651,
|
456 |
+
"effective": 651
|
457 |
+
},
|
458 |
+
"agieval_sat_math": {
|
459 |
+
"original": 220,
|
460 |
+
"effective": 220
|
461 |
+
},
|
462 |
+
"agieval_lsat_rc": {
|
463 |
+
"original": 269,
|
464 |
+
"effective": 269
|
465 |
+
},
|
466 |
+
"agieval_lsat_lr": {
|
467 |
+
"original": 510,
|
468 |
+
"effective": 510
|
469 |
+
}
|
470 |
+
},
|
471 |
+
"config": {
|
472 |
+
"model": "hf",
|
473 |
+
"model_args": "pretrained=/home/migel/Tess-v2.5-qwen2-72B-safetensors,parallelize=True",
|
474 |
+
"model_num_parameters": 72706203648,
|
475 |
+
"model_dtype": "torch.float16",
|
476 |
+
"model_revision": "main",
|
477 |
+
"model_sha": "",
|
478 |
+
"batch_size": "16",
|
479 |
+
"batch_sizes": [],
|
480 |
+
"device": null,
|
481 |
+
"use_cache": null,
|
482 |
+
"limit": null,
|
483 |
+
"bootstrap_iters": 100000,
|
484 |
+
"gen_kwargs": null,
|
485 |
+
"random_seed": 0,
|
486 |
+
"numpy_seed": 1234,
|
487 |
+
"torch_seed": 1234,
|
488 |
+
"fewshot_seed": 1234
|
489 |
+
},
|
490 |
+
"git_hash": "b3e4c49a",
|
491 |
+
"date": 1718163625.5715299,
|
492 |
+
"pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 20.04.6 LTS (x86_64)\nGCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.31\n\nPython version: 3.10.14 (main, Apr 6 2024, 18:45:05) [GCC 9.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1050-azure-x86_64-with-glibc2.31\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\nGPU 2: NVIDIA A100 80GB PCIe\nGPU 3: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 530.30.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nAddress sizes: 48 bits physical, 48 bits virtual\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nNUMA node(s): 4\nVendor ID: AuthenticAMD\nCPU family: 25\nModel: 1\nModel name: AMD EPYC 7V13 64-Core Processor\nStepping: 1\nCPU MHz: 2445.435\nBogoMIPS: 4890.87\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB\nL1i cache: 3 MiB\nL2 cache: 48 MiB\nL3 cache: 384 MiB\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[pip3] triton==2.3.0\n[conda] magma-cuda117 2.6.1 1 pytorch\n[conda] mkl 2022.2.1 pypi_0 pypi\n[conda] mkl-include 2022.2.1 pypi_0 pypi\n[conda] numpy 1.24.4 pypi_0 pypi\n[conda] pytorch-lightning 1.9.5 pypi_0 pypi\n[conda] torch 2.0.1 pypi_0 pypi\n[conda] torch-nebula 0.16.10 pypi_0 pypi\n[conda] torch-ort 1.17.0 pypi_0 pypi\n[conda] torchaudio 2.0.2+cu117 pypi_0 pypi\n[conda] torchdata 0.6.1 pypi_0 pypi\n[conda] torchmetrics 1.2.0 pypi_0 pypi\n[conda] torchsnapshot 0.1.0 pypi_0 pypi\n[conda] torchvision 0.15.2+cu117 pypi_0 pypi\n[conda] triton 2.0.0 pypi_0 pypi",
|
493 |
+
"transformers_version": "4.41.1",
|
494 |
+
"upper_git_hash": null,
|
495 |
+
"task_hashes": {},
|
496 |
+
"model_source": "hf",
|
497 |
+
"model_name": "/home/migel/Tess-v2.5-qwen2-72B-safetensors",
|
498 |
+
"model_name_sanitized": "__home__migel__Tess-v2.5-qwen2-72B-safetensors",
|
499 |
+
"system_instruction": null,
|
500 |
+
"system_instruction_sha": null,
|
501 |
+
"chat_template": null,
|
502 |
+
"chat_template_sha": null,
|
503 |
+
"start_time": 377200.61189737,
|
504 |
+
"end_time": 380116.891366629,
|
505 |
+
"total_evaluation_time_seconds": "2916.279469258967"
|
506 |
+
}
|
Evals/Tess-v2.5-Qwen2-72B-hellaswag.json
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6811392152957578,
|
5 |
+
"acc_stderr,none": 0.004650825168905212,
|
6 |
+
"acc_norm,none": 0.8729336785500896,
|
7 |
+
"acc_norm_stderr,none": 0.0033236659644120307,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"hellaswag": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"hellaswag": {
|
16 |
+
"task": "hellaswag",
|
17 |
+
"group": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "hellaswag",
|
21 |
+
"training_split": "train",
|
22 |
+
"validation_split": "validation",
|
23 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
24 |
+
"doc_to_text": "{{query}}",
|
25 |
+
"doc_to_target": "{{label}}",
|
26 |
+
"doc_to_choice": "choices",
|
27 |
+
"description": "",
|
28 |
+
"target_delimiter": " ",
|
29 |
+
"fewshot_delimiter": "\n\n",
|
30 |
+
"num_fewshot": 10,
|
31 |
+
"metric_list": [
|
32 |
+
{
|
33 |
+
"metric": "acc",
|
34 |
+
"aggregation": "mean",
|
35 |
+
"higher_is_better": true
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"metric": "acc_norm",
|
39 |
+
"aggregation": "mean",
|
40 |
+
"higher_is_better": true
|
41 |
+
}
|
42 |
+
],
|
43 |
+
"output_type": "multiple_choice",
|
44 |
+
"repeats": 1,
|
45 |
+
"should_decontaminate": false,
|
46 |
+
"metadata": {
|
47 |
+
"version": 1.0
|
48 |
+
}
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"versions": {
|
52 |
+
"hellaswag": 1.0
|
53 |
+
},
|
54 |
+
"n-shot": {
|
55 |
+
"hellaswag": 10
|
56 |
+
},
|
57 |
+
"higher_is_better": {
|
58 |
+
"hellaswag": {
|
59 |
+
"acc": true,
|
60 |
+
"acc_norm": true
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"n-samples": {
|
64 |
+
"hellaswag": {
|
65 |
+
"original": 10042,
|
66 |
+
"effective": 10042
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"config": {
|
70 |
+
"model": "hf",
|
71 |
+
"model_args": "pretrained=/home/migel/Tess-v2.5-qwen2-72B-safetensors,parallelize=True",
|
72 |
+
"model_num_parameters": 72706203648,
|
73 |
+
"model_dtype": "torch.float16",
|
74 |
+
"model_revision": "main",
|
75 |
+
"model_sha": "",
|
76 |
+
"batch_size": "8",
|
77 |
+
"batch_sizes": [],
|
78 |
+
"device": null,
|
79 |
+
"use_cache": null,
|
80 |
+
"limit": null,
|
81 |
+
"bootstrap_iters": 100000,
|
82 |
+
"gen_kwargs": null,
|
83 |
+
"random_seed": 0,
|
84 |
+
"numpy_seed": 1234,
|
85 |
+
"torch_seed": 1234,
|
86 |
+
"fewshot_seed": 1234
|
87 |
+
},
|
88 |
+
"git_hash": "b3e4c49a",
|
89 |
+
"date": 1718190545.705119,
|
90 |
+
"pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 20.04.6 LTS (x86_64)\nGCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.31\n\nPython version: 3.10.14 (main, Apr 6 2024, 18:45:05) [GCC 9.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1050-azure-x86_64-with-glibc2.31\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\nGPU 2: NVIDIA A100 80GB PCIe\nGPU 3: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 530.30.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nAddress sizes: 48 bits physical, 48 bits virtual\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nNUMA node(s): 4\nVendor ID: AuthenticAMD\nCPU family: 25\nModel: 1\nModel name: AMD EPYC 7V13 64-Core Processor\nStepping: 1\nCPU MHz: 2445.435\nBogoMIPS: 4890.87\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB\nL1i cache: 3 MiB\nL2 cache: 48 MiB\nL3 cache: 384 MiB\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[pip3] triton==2.3.0\n[conda] magma-cuda117 2.6.1 1 pytorch\n[conda] mkl 2022.2.1 pypi_0 pypi\n[conda] mkl-include 2022.2.1 pypi_0 pypi\n[conda] numpy 1.24.4 pypi_0 pypi\n[conda] pytorch-lightning 1.9.5 pypi_0 pypi\n[conda] torch 2.0.1 pypi_0 pypi\n[conda] torch-nebula 0.16.10 pypi_0 pypi\n[conda] torch-ort 1.17.0 pypi_0 pypi\n[conda] torchaudio 2.0.2+cu117 pypi_0 pypi\n[conda] torchdata 0.6.1 pypi_0 pypi\n[conda] torchmetrics 1.2.0 pypi_0 pypi\n[conda] torchsnapshot 0.1.0 pypi_0 pypi\n[conda] torchvision 0.15.2+cu117 pypi_0 pypi\n[conda] triton 2.0.0 pypi_0 pypi",
|
91 |
+
"transformers_version": "4.41.1",
|
92 |
+
"upper_git_hash": null,
|
93 |
+
"task_hashes": {},
|
94 |
+
"model_source": "hf",
|
95 |
+
"model_name": "/home/migel/Tess-v2.5-qwen2-72B-safetensors",
|
96 |
+
"model_name_sanitized": "__home__migel__Tess-v2.5-qwen2-72B-safetensors",
|
97 |
+
"system_instruction": null,
|
98 |
+
"system_instruction_sha": null,
|
99 |
+
"chat_template": null,
|
100 |
+
"chat_template_sha": null,
|
101 |
+
"start_time": 404120.678699121,
|
102 |
+
"end_time": 430406.206534399,
|
103 |
+
"total_evaluation_time_seconds": "26285.527835278015"
|
104 |
+
}
|
Evals/Tess-v2.5-Qwen2-72B-mmlu.json
ADDED
@@ -0,0 +1,3158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"mmlu": {
|
4 |
+
"acc,none": 0.8439680957128615,
|
5 |
+
"acc_stderr,none": 0.0029499711040394372,
|
6 |
+
"alias": "mmlu"
|
7 |
+
},
|
8 |
+
"mmlu_humanities": {
|
9 |
+
"alias": " - humanities",
|
10 |
+
"acc,none": 0.8146652497343252,
|
11 |
+
"acc_stderr,none": 0.005505402478774841
|
12 |
+
},
|
13 |
+
"mmlu_formal_logic": {
|
14 |
+
"alias": " - formal_logic",
|
15 |
+
"acc,none": 0.7301587301587301,
|
16 |
+
"acc_stderr,none": 0.03970158273235173
|
17 |
+
},
|
18 |
+
"mmlu_high_school_european_history": {
|
19 |
+
"alias": " - high_school_european_history",
|
20 |
+
"acc,none": 0.8909090909090909,
|
21 |
+
"acc_stderr,none": 0.02434383813514564
|
22 |
+
},
|
23 |
+
"mmlu_high_school_us_history": {
|
24 |
+
"alias": " - high_school_us_history",
|
25 |
+
"acc,none": 0.9509803921568627,
|
26 |
+
"acc_stderr,none": 0.01515383934021267
|
27 |
+
},
|
28 |
+
"mmlu_high_school_world_history": {
|
29 |
+
"alias": " - high_school_world_history",
|
30 |
+
"acc,none": 0.9409282700421941,
|
31 |
+
"acc_stderr,none": 0.01534659746388869
|
32 |
+
},
|
33 |
+
"mmlu_international_law": {
|
34 |
+
"alias": " - international_law",
|
35 |
+
"acc,none": 0.9173553719008265,
|
36 |
+
"acc_stderr,none": 0.025135382356604227
|
37 |
+
},
|
38 |
+
"mmlu_jurisprudence": {
|
39 |
+
"alias": " - jurisprudence",
|
40 |
+
"acc,none": 0.8796296296296297,
|
41 |
+
"acc_stderr,none": 0.031457038543062525
|
42 |
+
},
|
43 |
+
"mmlu_logical_fallacies": {
|
44 |
+
"alias": " - logical_fallacies",
|
45 |
+
"acc,none": 0.901840490797546,
|
46 |
+
"acc_stderr,none": 0.023376180231059605
|
47 |
+
},
|
48 |
+
"mmlu_moral_disputes": {
|
49 |
+
"alias": " - moral_disputes",
|
50 |
+
"acc,none": 0.869942196531792,
|
51 |
+
"acc_stderr,none": 0.01810939152822133
|
52 |
+
},
|
53 |
+
"mmlu_moral_scenarios": {
|
54 |
+
"alias": " - moral_scenarios",
|
55 |
+
"acc,none": 0.829050279329609,
|
56 |
+
"acc_stderr,none": 0.012590873868789222
|
57 |
+
},
|
58 |
+
"mmlu_philosophy": {
|
59 |
+
"alias": " - philosophy",
|
60 |
+
"acc,none": 0.8713826366559485,
|
61 |
+
"acc_stderr,none": 0.01901399630412152
|
62 |
+
},
|
63 |
+
"mmlu_prehistory": {
|
64 |
+
"alias": " - prehistory",
|
65 |
+
"acc,none": 0.9104938271604939,
|
66 |
+
"acc_stderr,none": 0.015884141073937555
|
67 |
+
},
|
68 |
+
"mmlu_professional_law": {
|
69 |
+
"alias": " - professional_law",
|
70 |
+
"acc,none": 0.6929595827900913,
|
71 |
+
"acc_stderr,none": 0.011780959114513764
|
72 |
+
},
|
73 |
+
"mmlu_world_religions": {
|
74 |
+
"alias": " - world_religions",
|
75 |
+
"acc,none": 0.8888888888888888,
|
76 |
+
"acc_stderr,none": 0.024103384202072864
|
77 |
+
},
|
78 |
+
"mmlu_other": {
|
79 |
+
"alias": " - other",
|
80 |
+
"acc,none": 0.8625683939491471,
|
81 |
+
"acc_stderr,none": 0.005895325056685939
|
82 |
+
},
|
83 |
+
"mmlu_business_ethics": {
|
84 |
+
"alias": " - business_ethics",
|
85 |
+
"acc,none": 0.78,
|
86 |
+
"acc_stderr,none": 0.04163331998932263
|
87 |
+
},
|
88 |
+
"mmlu_clinical_knowledge": {
|
89 |
+
"alias": " - clinical_knowledge",
|
90 |
+
"acc,none": 0.8716981132075472,
|
91 |
+
"acc_stderr,none": 0.02058247568799185
|
92 |
+
},
|
93 |
+
"mmlu_college_medicine": {
|
94 |
+
"alias": " - college_medicine",
|
95 |
+
"acc,none": 0.8323699421965318,
|
96 |
+
"acc_stderr,none": 0.028481963032143395
|
97 |
+
},
|
98 |
+
"mmlu_global_facts": {
|
99 |
+
"alias": " - global_facts",
|
100 |
+
"acc,none": 0.61,
|
101 |
+
"acc_stderr,none": 0.04902071300001975
|
102 |
+
},
|
103 |
+
"mmlu_human_aging": {
|
104 |
+
"alias": " - human_aging",
|
105 |
+
"acc,none": 0.8565022421524664,
|
106 |
+
"acc_stderr,none": 0.0235293712696182
|
107 |
+
},
|
108 |
+
"mmlu_management": {
|
109 |
+
"alias": " - management",
|
110 |
+
"acc,none": 0.9223300970873787,
|
111 |
+
"acc_stderr,none": 0.026501440784762766
|
112 |
+
},
|
113 |
+
"mmlu_marketing": {
|
114 |
+
"alias": " - marketing",
|
115 |
+
"acc,none": 0.9487179487179487,
|
116 |
+
"acc_stderr,none": 0.014450181176872726
|
117 |
+
},
|
118 |
+
"mmlu_medical_genetics": {
|
119 |
+
"alias": " - medical_genetics",
|
120 |
+
"acc,none": 0.9,
|
121 |
+
"acc_stderr,none": 0.030151134457776348
|
122 |
+
},
|
123 |
+
"mmlu_miscellaneous": {
|
124 |
+
"alias": " - miscellaneous",
|
125 |
+
"acc,none": 0.9501915708812261,
|
126 |
+
"acc_stderr,none": 0.0077795348866793465
|
127 |
+
},
|
128 |
+
"mmlu_nutrition": {
|
129 |
+
"alias": " - nutrition",
|
130 |
+
"acc,none": 0.9019607843137255,
|
131 |
+
"acc_stderr,none": 0.017027222935582193
|
132 |
+
},
|
133 |
+
"mmlu_professional_accounting": {
|
134 |
+
"alias": " - professional_accounting",
|
135 |
+
"acc,none": 0.75177304964539,
|
136 |
+
"acc_stderr,none": 0.025770015644290392
|
137 |
+
},
|
138 |
+
"mmlu_professional_medicine": {
|
139 |
+
"alias": " - professional_medicine",
|
140 |
+
"acc,none": 0.8897058823529411,
|
141 |
+
"acc_stderr,none": 0.019028947191474497
|
142 |
+
},
|
143 |
+
"mmlu_virology": {
|
144 |
+
"alias": " - virology",
|
145 |
+
"acc,none": 0.5662650602409639,
|
146 |
+
"acc_stderr,none": 0.03858158940685517
|
147 |
+
},
|
148 |
+
"mmlu_social_sciences": {
|
149 |
+
"alias": " - social_sciences",
|
150 |
+
"acc,none": 0.9038024049398765,
|
151 |
+
"acc_stderr,none": 0.005221504585802578
|
152 |
+
},
|
153 |
+
"mmlu_econometrics": {
|
154 |
+
"alias": " - econometrics",
|
155 |
+
"acc,none": 0.7280701754385965,
|
156 |
+
"acc_stderr,none": 0.041857744240220554
|
157 |
+
},
|
158 |
+
"mmlu_high_school_geography": {
|
159 |
+
"alias": " - high_school_geography",
|
160 |
+
"acc,none": 0.9393939393939394,
|
161 |
+
"acc_stderr,none": 0.016999994927421606
|
162 |
+
},
|
163 |
+
"mmlu_high_school_government_and_politics": {
|
164 |
+
"alias": " - high_school_government_and_politics",
|
165 |
+
"acc,none": 0.9896373056994818,
|
166 |
+
"acc_stderr,none": 0.007308424386792201
|
167 |
+
},
|
168 |
+
"mmlu_high_school_macroeconomics": {
|
169 |
+
"alias": " - high_school_macroeconomics",
|
170 |
+
"acc,none": 0.8897435897435897,
|
171 |
+
"acc_stderr,none": 0.015880331261056115
|
172 |
+
},
|
173 |
+
"mmlu_high_school_microeconomics": {
|
174 |
+
"alias": " - high_school_microeconomics",
|
175 |
+
"acc,none": 0.9411764705882353,
|
176 |
+
"acc_stderr,none": 0.015283995352038402
|
177 |
+
},
|
178 |
+
"mmlu_high_school_psychology": {
|
179 |
+
"alias": " - high_school_psychology",
|
180 |
+
"acc,none": 0.9357798165137615,
|
181 |
+
"acc_stderr,none": 0.010510494713201424
|
182 |
+
},
|
183 |
+
"mmlu_human_sexuality": {
|
184 |
+
"alias": " - human_sexuality",
|
185 |
+
"acc,none": 0.9083969465648855,
|
186 |
+
"acc_stderr,none": 0.025300035578642965
|
187 |
+
},
|
188 |
+
"mmlu_professional_psychology": {
|
189 |
+
"alias": " - professional_psychology",
|
190 |
+
"acc,none": 0.8970588235294118,
|
191 |
+
"acc_stderr,none": 0.012293751200845176
|
192 |
+
},
|
193 |
+
"mmlu_public_relations": {
|
194 |
+
"alias": " - public_relations",
|
195 |
+
"acc,none": 0.7454545454545455,
|
196 |
+
"acc_stderr,none": 0.041723430387053825
|
197 |
+
},
|
198 |
+
"mmlu_security_studies": {
|
199 |
+
"alias": " - security_studies",
|
200 |
+
"acc,none": 0.8408163265306122,
|
201 |
+
"acc_stderr,none": 0.023420972069166365
|
202 |
+
},
|
203 |
+
"mmlu_sociology": {
|
204 |
+
"alias": " - sociology",
|
205 |
+
"acc,none": 0.945273631840796,
|
206 |
+
"acc_stderr,none": 0.016082815796263254
|
207 |
+
},
|
208 |
+
"mmlu_us_foreign_policy": {
|
209 |
+
"alias": " - us_foreign_policy",
|
210 |
+
"acc,none": 0.94,
|
211 |
+
"acc_stderr,none": 0.02386832565759419
|
212 |
+
},
|
213 |
+
"mmlu_stem": {
|
214 |
+
"alias": " - stem",
|
215 |
+
"acc,none": 0.8109736758642563,
|
216 |
+
"acc_stderr,none": 0.0067376135296805745
|
217 |
+
},
|
218 |
+
"mmlu_abstract_algebra": {
|
219 |
+
"alias": " - abstract_algebra",
|
220 |
+
"acc,none": 0.66,
|
221 |
+
"acc_stderr,none": 0.04760952285695237
|
222 |
+
},
|
223 |
+
"mmlu_anatomy": {
|
224 |
+
"alias": " - anatomy",
|
225 |
+
"acc,none": 0.7925925925925926,
|
226 |
+
"acc_stderr,none": 0.03502553170678317
|
227 |
+
},
|
228 |
+
"mmlu_astronomy": {
|
229 |
+
"alias": " - astronomy",
|
230 |
+
"acc,none": 0.9276315789473685,
|
231 |
+
"acc_stderr,none": 0.021085011261884112
|
232 |
+
},
|
233 |
+
"mmlu_college_biology": {
|
234 |
+
"alias": " - college_biology",
|
235 |
+
"acc,none": 0.9444444444444444,
|
236 |
+
"acc_stderr,none": 0.01915507853243362
|
237 |
+
},
|
238 |
+
"mmlu_college_chemistry": {
|
239 |
+
"alias": " - college_chemistry",
|
240 |
+
"acc,none": 0.58,
|
241 |
+
"acc_stderr,none": 0.049604496374885836
|
242 |
+
},
|
243 |
+
"mmlu_college_computer_science": {
|
244 |
+
"alias": " - college_computer_science",
|
245 |
+
"acc,none": 0.8,
|
246 |
+
"acc_stderr,none": 0.040201512610368445
|
247 |
+
},
|
248 |
+
"mmlu_college_mathematics": {
|
249 |
+
"alias": " - college_mathematics",
|
250 |
+
"acc,none": 0.63,
|
251 |
+
"acc_stderr,none": 0.04852365870939099
|
252 |
+
},
|
253 |
+
"mmlu_college_physics": {
|
254 |
+
"alias": " - college_physics",
|
255 |
+
"acc,none": 0.6470588235294118,
|
256 |
+
"acc_stderr,none": 0.04755129616062947
|
257 |
+
},
|
258 |
+
"mmlu_computer_security": {
|
259 |
+
"alias": " - computer_security",
|
260 |
+
"acc,none": 0.83,
|
261 |
+
"acc_stderr,none": 0.0377525168068637
|
262 |
+
},
|
263 |
+
"mmlu_conceptual_physics": {
|
264 |
+
"alias": " - conceptual_physics",
|
265 |
+
"acc,none": 0.8893617021276595,
|
266 |
+
"acc_stderr,none": 0.020506145099008433
|
267 |
+
},
|
268 |
+
"mmlu_electrical_engineering": {
|
269 |
+
"alias": " - electrical_engineering",
|
270 |
+
"acc,none": 0.8275862068965517,
|
271 |
+
"acc_stderr,none": 0.03147830790259575
|
272 |
+
},
|
273 |
+
"mmlu_elementary_mathematics": {
|
274 |
+
"alias": " - elementary_mathematics",
|
275 |
+
"acc,none": 0.8888888888888888,
|
276 |
+
"acc_stderr,none": 0.01618571201620511
|
277 |
+
},
|
278 |
+
"mmlu_high_school_biology": {
|
279 |
+
"alias": " - high_school_biology",
|
280 |
+
"acc,none": 0.9419354838709677,
|
281 |
+
"acc_stderr,none": 0.01330413811280927
|
282 |
+
},
|
283 |
+
"mmlu_high_school_chemistry": {
|
284 |
+
"alias": " - high_school_chemistry",
|
285 |
+
"acc,none": 0.7980295566502463,
|
286 |
+
"acc_stderr,none": 0.028247350122180243
|
287 |
+
},
|
288 |
+
"mmlu_high_school_computer_science": {
|
289 |
+
"alias": " - high_school_computer_science",
|
290 |
+
"acc,none": 0.91,
|
291 |
+
"acc_stderr,none": 0.028762349126466115
|
292 |
+
},
|
293 |
+
"mmlu_high_school_mathematics": {
|
294 |
+
"alias": " - high_school_mathematics",
|
295 |
+
"acc,none": 0.6777777777777778,
|
296 |
+
"acc_stderr,none": 0.028493465091028597
|
297 |
+
},
|
298 |
+
"mmlu_high_school_physics": {
|
299 |
+
"alias": " - high_school_physics",
|
300 |
+
"acc,none": 0.7284768211920529,
|
301 |
+
"acc_stderr,none": 0.03631329803969654
|
302 |
+
},
|
303 |
+
"mmlu_high_school_statistics": {
|
304 |
+
"alias": " - high_school_statistics",
|
305 |
+
"acc,none": 0.7824074074074074,
|
306 |
+
"acc_stderr,none": 0.028139689444859676
|
307 |
+
},
|
308 |
+
"mmlu_machine_learning": {
|
309 |
+
"alias": " - machine_learning",
|
310 |
+
"acc,none": 0.7589285714285714,
|
311 |
+
"acc_stderr,none": 0.04059867246952685
|
312 |
+
}
|
313 |
+
},
|
314 |
+
"groups": {
|
315 |
+
"mmlu": {
|
316 |
+
"acc,none": 0.8439680957128615,
|
317 |
+
"acc_stderr,none": 0.0029499711040394372,
|
318 |
+
"alias": "mmlu"
|
319 |
+
},
|
320 |
+
"mmlu_humanities": {
|
321 |
+
"alias": " - humanities",
|
322 |
+
"acc,none": 0.8146652497343252,
|
323 |
+
"acc_stderr,none": 0.005505402478774841
|
324 |
+
},
|
325 |
+
"mmlu_other": {
|
326 |
+
"alias": " - other",
|
327 |
+
"acc,none": 0.8625683939491471,
|
328 |
+
"acc_stderr,none": 0.005895325056685939
|
329 |
+
},
|
330 |
+
"mmlu_social_sciences": {
|
331 |
+
"alias": " - social_sciences",
|
332 |
+
"acc,none": 0.9038024049398765,
|
333 |
+
"acc_stderr,none": 0.005221504585802578
|
334 |
+
},
|
335 |
+
"mmlu_stem": {
|
336 |
+
"alias": " - stem",
|
337 |
+
"acc,none": 0.8109736758642563,
|
338 |
+
"acc_stderr,none": 0.0067376135296805745
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"group_subtasks": {
|
342 |
+
"mmlu_stem": [
|
343 |
+
"mmlu_college_biology",
|
344 |
+
"mmlu_high_school_computer_science",
|
345 |
+
"mmlu_elementary_mathematics",
|
346 |
+
"mmlu_astronomy",
|
347 |
+
"mmlu_machine_learning",
|
348 |
+
"mmlu_high_school_mathematics",
|
349 |
+
"mmlu_electrical_engineering",
|
350 |
+
"mmlu_college_chemistry",
|
351 |
+
"mmlu_college_mathematics",
|
352 |
+
"mmlu_high_school_statistics",
|
353 |
+
"mmlu_high_school_biology",
|
354 |
+
"mmlu_abstract_algebra",
|
355 |
+
"mmlu_college_physics",
|
356 |
+
"mmlu_conceptual_physics",
|
357 |
+
"mmlu_computer_security",
|
358 |
+
"mmlu_anatomy",
|
359 |
+
"mmlu_college_computer_science",
|
360 |
+
"mmlu_high_school_physics",
|
361 |
+
"mmlu_high_school_chemistry"
|
362 |
+
],
|
363 |
+
"mmlu_other": [
|
364 |
+
"mmlu_marketing",
|
365 |
+
"mmlu_professional_accounting",
|
366 |
+
"mmlu_clinical_knowledge",
|
367 |
+
"mmlu_college_medicine",
|
368 |
+
"mmlu_miscellaneous",
|
369 |
+
"mmlu_virology",
|
370 |
+
"mmlu_business_ethics",
|
371 |
+
"mmlu_professional_medicine",
|
372 |
+
"mmlu_global_facts",
|
373 |
+
"mmlu_nutrition",
|
374 |
+
"mmlu_human_aging",
|
375 |
+
"mmlu_management",
|
376 |
+
"mmlu_medical_genetics"
|
377 |
+
],
|
378 |
+
"mmlu_social_sciences": [
|
379 |
+
"mmlu_high_school_psychology",
|
380 |
+
"mmlu_high_school_geography",
|
381 |
+
"mmlu_high_school_macroeconomics",
|
382 |
+
"mmlu_public_relations",
|
383 |
+
"mmlu_security_studies",
|
384 |
+
"mmlu_high_school_microeconomics",
|
385 |
+
"mmlu_human_sexuality",
|
386 |
+
"mmlu_sociology",
|
387 |
+
"mmlu_professional_psychology",
|
388 |
+
"mmlu_econometrics",
|
389 |
+
"mmlu_us_foreign_policy",
|
390 |
+
"mmlu_high_school_government_and_politics"
|
391 |
+
],
|
392 |
+
"mmlu_humanities": [
|
393 |
+
"mmlu_moral_scenarios",
|
394 |
+
"mmlu_high_school_us_history",
|
395 |
+
"mmlu_high_school_world_history",
|
396 |
+
"mmlu_world_religions",
|
397 |
+
"mmlu_formal_logic",
|
398 |
+
"mmlu_moral_disputes",
|
399 |
+
"mmlu_prehistory",
|
400 |
+
"mmlu_international_law",
|
401 |
+
"mmlu_logical_fallacies",
|
402 |
+
"mmlu_professional_law",
|
403 |
+
"mmlu_philosophy",
|
404 |
+
"mmlu_high_school_european_history",
|
405 |
+
"mmlu_jurisprudence"
|
406 |
+
],
|
407 |
+
"mmlu": [
|
408 |
+
"mmlu_humanities",
|
409 |
+
"mmlu_social_sciences",
|
410 |
+
"mmlu_other",
|
411 |
+
"mmlu_stem"
|
412 |
+
]
|
413 |
+
},
|
414 |
+
"configs": {
|
415 |
+
"mmlu_abstract_algebra": {
|
416 |
+
"task": "mmlu_abstract_algebra",
|
417 |
+
"task_alias": "abstract_algebra",
|
418 |
+
"group": "mmlu_stem",
|
419 |
+
"group_alias": "stem",
|
420 |
+
"dataset_path": "hails/mmlu_no_train",
|
421 |
+
"dataset_name": "abstract_algebra",
|
422 |
+
"test_split": "test",
|
423 |
+
"fewshot_split": "dev",
|
424 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
425 |
+
"doc_to_target": "answer",
|
426 |
+
"doc_to_choice": [
|
427 |
+
"A",
|
428 |
+
"B",
|
429 |
+
"C",
|
430 |
+
"D"
|
431 |
+
],
|
432 |
+
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
|
433 |
+
"target_delimiter": " ",
|
434 |
+
"fewshot_delimiter": "\n\n",
|
435 |
+
"fewshot_config": {
|
436 |
+
"sampler": "first_n"
|
437 |
+
},
|
438 |
+
"num_fewshot": 5,
|
439 |
+
"metric_list": [
|
440 |
+
{
|
441 |
+
"metric": "acc",
|
442 |
+
"aggregation": "mean",
|
443 |
+
"higher_is_better": true
|
444 |
+
}
|
445 |
+
],
|
446 |
+
"output_type": "multiple_choice",
|
447 |
+
"repeats": 1,
|
448 |
+
"should_decontaminate": false,
|
449 |
+
"metadata": {
|
450 |
+
"version": 0.0
|
451 |
+
}
|
452 |
+
},
|
453 |
+
"mmlu_anatomy": {
|
454 |
+
"task": "mmlu_anatomy",
|
455 |
+
"task_alias": "anatomy",
|
456 |
+
"group": "mmlu_stem",
|
457 |
+
"group_alias": "stem",
|
458 |
+
"dataset_path": "hails/mmlu_no_train",
|
459 |
+
"dataset_name": "anatomy",
|
460 |
+
"test_split": "test",
|
461 |
+
"fewshot_split": "dev",
|
462 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
463 |
+
"doc_to_target": "answer",
|
464 |
+
"doc_to_choice": [
|
465 |
+
"A",
|
466 |
+
"B",
|
467 |
+
"C",
|
468 |
+
"D"
|
469 |
+
],
|
470 |
+
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
|
471 |
+
"target_delimiter": " ",
|
472 |
+
"fewshot_delimiter": "\n\n",
|
473 |
+
"fewshot_config": {
|
474 |
+
"sampler": "first_n"
|
475 |
+
},
|
476 |
+
"num_fewshot": 5,
|
477 |
+
"metric_list": [
|
478 |
+
{
|
479 |
+
"metric": "acc",
|
480 |
+
"aggregation": "mean",
|
481 |
+
"higher_is_better": true
|
482 |
+
}
|
483 |
+
],
|
484 |
+
"output_type": "multiple_choice",
|
485 |
+
"repeats": 1,
|
486 |
+
"should_decontaminate": false,
|
487 |
+
"metadata": {
|
488 |
+
"version": 0.0
|
489 |
+
}
|
490 |
+
},
|
491 |
+
"mmlu_astronomy": {
|
492 |
+
"task": "mmlu_astronomy",
|
493 |
+
"task_alias": "astronomy",
|
494 |
+
"group": "mmlu_stem",
|
495 |
+
"group_alias": "stem",
|
496 |
+
"dataset_path": "hails/mmlu_no_train",
|
497 |
+
"dataset_name": "astronomy",
|
498 |
+
"test_split": "test",
|
499 |
+
"fewshot_split": "dev",
|
500 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
501 |
+
"doc_to_target": "answer",
|
502 |
+
"doc_to_choice": [
|
503 |
+
"A",
|
504 |
+
"B",
|
505 |
+
"C",
|
506 |
+
"D"
|
507 |
+
],
|
508 |
+
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
|
509 |
+
"target_delimiter": " ",
|
510 |
+
"fewshot_delimiter": "\n\n",
|
511 |
+
"fewshot_config": {
|
512 |
+
"sampler": "first_n"
|
513 |
+
},
|
514 |
+
"num_fewshot": 5,
|
515 |
+
"metric_list": [
|
516 |
+
{
|
517 |
+
"metric": "acc",
|
518 |
+
"aggregation": "mean",
|
519 |
+
"higher_is_better": true
|
520 |
+
}
|
521 |
+
],
|
522 |
+
"output_type": "multiple_choice",
|
523 |
+
"repeats": 1,
|
524 |
+
"should_decontaminate": false,
|
525 |
+
"metadata": {
|
526 |
+
"version": 0.0
|
527 |
+
}
|
528 |
+
},
|
529 |
+
"mmlu_business_ethics": {
|
530 |
+
"task": "mmlu_business_ethics",
|
531 |
+
"task_alias": "business_ethics",
|
532 |
+
"group": "mmlu_other",
|
533 |
+
"group_alias": "other",
|
534 |
+
"dataset_path": "hails/mmlu_no_train",
|
535 |
+
"dataset_name": "business_ethics",
|
536 |
+
"test_split": "test",
|
537 |
+
"fewshot_split": "dev",
|
538 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
539 |
+
"doc_to_target": "answer",
|
540 |
+
"doc_to_choice": [
|
541 |
+
"A",
|
542 |
+
"B",
|
543 |
+
"C",
|
544 |
+
"D"
|
545 |
+
],
|
546 |
+
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
|
547 |
+
"target_delimiter": " ",
|
548 |
+
"fewshot_delimiter": "\n\n",
|
549 |
+
"fewshot_config": {
|
550 |
+
"sampler": "first_n"
|
551 |
+
},
|
552 |
+
"num_fewshot": 5,
|
553 |
+
"metric_list": [
|
554 |
+
{
|
555 |
+
"metric": "acc",
|
556 |
+
"aggregation": "mean",
|
557 |
+
"higher_is_better": true
|
558 |
+
}
|
559 |
+
],
|
560 |
+
"output_type": "multiple_choice",
|
561 |
+
"repeats": 1,
|
562 |
+
"should_decontaminate": false,
|
563 |
+
"metadata": {
|
564 |
+
"version": 0.0
|
565 |
+
}
|
566 |
+
},
|
567 |
+
"mmlu_clinical_knowledge": {
|
568 |
+
"task": "mmlu_clinical_knowledge",
|
569 |
+
"task_alias": "clinical_knowledge",
|
570 |
+
"group": "mmlu_other",
|
571 |
+
"group_alias": "other",
|
572 |
+
"dataset_path": "hails/mmlu_no_train",
|
573 |
+
"dataset_name": "clinical_knowledge",
|
574 |
+
"test_split": "test",
|
575 |
+
"fewshot_split": "dev",
|
576 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
577 |
+
"doc_to_target": "answer",
|
578 |
+
"doc_to_choice": [
|
579 |
+
"A",
|
580 |
+
"B",
|
581 |
+
"C",
|
582 |
+
"D"
|
583 |
+
],
|
584 |
+
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
|
585 |
+
"target_delimiter": " ",
|
586 |
+
"fewshot_delimiter": "\n\n",
|
587 |
+
"fewshot_config": {
|
588 |
+
"sampler": "first_n"
|
589 |
+
},
|
590 |
+
"num_fewshot": 5,
|
591 |
+
"metric_list": [
|
592 |
+
{
|
593 |
+
"metric": "acc",
|
594 |
+
"aggregation": "mean",
|
595 |
+
"higher_is_better": true
|
596 |
+
}
|
597 |
+
],
|
598 |
+
"output_type": "multiple_choice",
|
599 |
+
"repeats": 1,
|
600 |
+
"should_decontaminate": false,
|
601 |
+
"metadata": {
|
602 |
+
"version": 0.0
|
603 |
+
}
|
604 |
+
},
|
605 |
+
"mmlu_college_biology": {
|
606 |
+
"task": "mmlu_college_biology",
|
607 |
+
"task_alias": "college_biology",
|
608 |
+
"group": "mmlu_stem",
|
609 |
+
"group_alias": "stem",
|
610 |
+
"dataset_path": "hails/mmlu_no_train",
|
611 |
+
"dataset_name": "college_biology",
|
612 |
+
"test_split": "test",
|
613 |
+
"fewshot_split": "dev",
|
614 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
615 |
+
"doc_to_target": "answer",
|
616 |
+
"doc_to_choice": [
|
617 |
+
"A",
|
618 |
+
"B",
|
619 |
+
"C",
|
620 |
+
"D"
|
621 |
+
],
|
622 |
+
"description": "The following are multiple choice questions (with answers) about college biology.\n\n",
|
623 |
+
"target_delimiter": " ",
|
624 |
+
"fewshot_delimiter": "\n\n",
|
625 |
+
"fewshot_config": {
|
626 |
+
"sampler": "first_n"
|
627 |
+
},
|
628 |
+
"num_fewshot": 5,
|
629 |
+
"metric_list": [
|
630 |
+
{
|
631 |
+
"metric": "acc",
|
632 |
+
"aggregation": "mean",
|
633 |
+
"higher_is_better": true
|
634 |
+
}
|
635 |
+
],
|
636 |
+
"output_type": "multiple_choice",
|
637 |
+
"repeats": 1,
|
638 |
+
"should_decontaminate": false,
|
639 |
+
"metadata": {
|
640 |
+
"version": 0.0
|
641 |
+
}
|
642 |
+
},
|
643 |
+
"mmlu_college_chemistry": {
|
644 |
+
"task": "mmlu_college_chemistry",
|
645 |
+
"task_alias": "college_chemistry",
|
646 |
+
"group": "mmlu_stem",
|
647 |
+
"group_alias": "stem",
|
648 |
+
"dataset_path": "hails/mmlu_no_train",
|
649 |
+
"dataset_name": "college_chemistry",
|
650 |
+
"test_split": "test",
|
651 |
+
"fewshot_split": "dev",
|
652 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
653 |
+
"doc_to_target": "answer",
|
654 |
+
"doc_to_choice": [
|
655 |
+
"A",
|
656 |
+
"B",
|
657 |
+
"C",
|
658 |
+
"D"
|
659 |
+
],
|
660 |
+
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
|
661 |
+
"target_delimiter": " ",
|
662 |
+
"fewshot_delimiter": "\n\n",
|
663 |
+
"fewshot_config": {
|
664 |
+
"sampler": "first_n"
|
665 |
+
},
|
666 |
+
"num_fewshot": 5,
|
667 |
+
"metric_list": [
|
668 |
+
{
|
669 |
+
"metric": "acc",
|
670 |
+
"aggregation": "mean",
|
671 |
+
"higher_is_better": true
|
672 |
+
}
|
673 |
+
],
|
674 |
+
"output_type": "multiple_choice",
|
675 |
+
"repeats": 1,
|
676 |
+
"should_decontaminate": false,
|
677 |
+
"metadata": {
|
678 |
+
"version": 0.0
|
679 |
+
}
|
680 |
+
},
|
681 |
+
"mmlu_college_computer_science": {
|
682 |
+
"task": "mmlu_college_computer_science",
|
683 |
+
"task_alias": "college_computer_science",
|
684 |
+
"group": "mmlu_stem",
|
685 |
+
"group_alias": "stem",
|
686 |
+
"dataset_path": "hails/mmlu_no_train",
|
687 |
+
"dataset_name": "college_computer_science",
|
688 |
+
"test_split": "test",
|
689 |
+
"fewshot_split": "dev",
|
690 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
691 |
+
"doc_to_target": "answer",
|
692 |
+
"doc_to_choice": [
|
693 |
+
"A",
|
694 |
+
"B",
|
695 |
+
"C",
|
696 |
+
"D"
|
697 |
+
],
|
698 |
+
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
|
699 |
+
"target_delimiter": " ",
|
700 |
+
"fewshot_delimiter": "\n\n",
|
701 |
+
"fewshot_config": {
|
702 |
+
"sampler": "first_n"
|
703 |
+
},
|
704 |
+
"num_fewshot": 5,
|
705 |
+
"metric_list": [
|
706 |
+
{
|
707 |
+
"metric": "acc",
|
708 |
+
"aggregation": "mean",
|
709 |
+
"higher_is_better": true
|
710 |
+
}
|
711 |
+
],
|
712 |
+
"output_type": "multiple_choice",
|
713 |
+
"repeats": 1,
|
714 |
+
"should_decontaminate": false,
|
715 |
+
"metadata": {
|
716 |
+
"version": 0.0
|
717 |
+
}
|
718 |
+
},
|
719 |
+
"mmlu_college_mathematics": {
|
720 |
+
"task": "mmlu_college_mathematics",
|
721 |
+
"task_alias": "college_mathematics",
|
722 |
+
"group": "mmlu_stem",
|
723 |
+
"group_alias": "stem",
|
724 |
+
"dataset_path": "hails/mmlu_no_train",
|
725 |
+
"dataset_name": "college_mathematics",
|
726 |
+
"test_split": "test",
|
727 |
+
"fewshot_split": "dev",
|
728 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
729 |
+
"doc_to_target": "answer",
|
730 |
+
"doc_to_choice": [
|
731 |
+
"A",
|
732 |
+
"B",
|
733 |
+
"C",
|
734 |
+
"D"
|
735 |
+
],
|
736 |
+
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
|
737 |
+
"target_delimiter": " ",
|
738 |
+
"fewshot_delimiter": "\n\n",
|
739 |
+
"fewshot_config": {
|
740 |
+
"sampler": "first_n"
|
741 |
+
},
|
742 |
+
"num_fewshot": 5,
|
743 |
+
"metric_list": [
|
744 |
+
{
|
745 |
+
"metric": "acc",
|
746 |
+
"aggregation": "mean",
|
747 |
+
"higher_is_better": true
|
748 |
+
}
|
749 |
+
],
|
750 |
+
"output_type": "multiple_choice",
|
751 |
+
"repeats": 1,
|
752 |
+
"should_decontaminate": false,
|
753 |
+
"metadata": {
|
754 |
+
"version": 0.0
|
755 |
+
}
|
756 |
+
},
|
757 |
+
"mmlu_college_medicine": {
|
758 |
+
"task": "mmlu_college_medicine",
|
759 |
+
"task_alias": "college_medicine",
|
760 |
+
"group": "mmlu_other",
|
761 |
+
"group_alias": "other",
|
762 |
+
"dataset_path": "hails/mmlu_no_train",
|
763 |
+
"dataset_name": "college_medicine",
|
764 |
+
"test_split": "test",
|
765 |
+
"fewshot_split": "dev",
|
766 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
767 |
+
"doc_to_target": "answer",
|
768 |
+
"doc_to_choice": [
|
769 |
+
"A",
|
770 |
+
"B",
|
771 |
+
"C",
|
772 |
+
"D"
|
773 |
+
],
|
774 |
+
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
|
775 |
+
"target_delimiter": " ",
|
776 |
+
"fewshot_delimiter": "\n\n",
|
777 |
+
"fewshot_config": {
|
778 |
+
"sampler": "first_n"
|
779 |
+
},
|
780 |
+
"num_fewshot": 5,
|
781 |
+
"metric_list": [
|
782 |
+
{
|
783 |
+
"metric": "acc",
|
784 |
+
"aggregation": "mean",
|
785 |
+
"higher_is_better": true
|
786 |
+
}
|
787 |
+
],
|
788 |
+
"output_type": "multiple_choice",
|
789 |
+
"repeats": 1,
|
790 |
+
"should_decontaminate": false,
|
791 |
+
"metadata": {
|
792 |
+
"version": 0.0
|
793 |
+
}
|
794 |
+
},
|
795 |
+
"mmlu_college_physics": {
|
796 |
+
"task": "mmlu_college_physics",
|
797 |
+
"task_alias": "college_physics",
|
798 |
+
"group": "mmlu_stem",
|
799 |
+
"group_alias": "stem",
|
800 |
+
"dataset_path": "hails/mmlu_no_train",
|
801 |
+
"dataset_name": "college_physics",
|
802 |
+
"test_split": "test",
|
803 |
+
"fewshot_split": "dev",
|
804 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
805 |
+
"doc_to_target": "answer",
|
806 |
+
"doc_to_choice": [
|
807 |
+
"A",
|
808 |
+
"B",
|
809 |
+
"C",
|
810 |
+
"D"
|
811 |
+
],
|
812 |
+
"description": "The following are multiple choice questions (with answers) about college physics.\n\n",
|
813 |
+
"target_delimiter": " ",
|
814 |
+
"fewshot_delimiter": "\n\n",
|
815 |
+
"fewshot_config": {
|
816 |
+
"sampler": "first_n"
|
817 |
+
},
|
818 |
+
"num_fewshot": 5,
|
819 |
+
"metric_list": [
|
820 |
+
{
|
821 |
+
"metric": "acc",
|
822 |
+
"aggregation": "mean",
|
823 |
+
"higher_is_better": true
|
824 |
+
}
|
825 |
+
],
|
826 |
+
"output_type": "multiple_choice",
|
827 |
+
"repeats": 1,
|
828 |
+
"should_decontaminate": false,
|
829 |
+
"metadata": {
|
830 |
+
"version": 0.0
|
831 |
+
}
|
832 |
+
},
|
833 |
+
"mmlu_computer_security": {
|
834 |
+
"task": "mmlu_computer_security",
|
835 |
+
"task_alias": "computer_security",
|
836 |
+
"group": "mmlu_stem",
|
837 |
+
"group_alias": "stem",
|
838 |
+
"dataset_path": "hails/mmlu_no_train",
|
839 |
+
"dataset_name": "computer_security",
|
840 |
+
"test_split": "test",
|
841 |
+
"fewshot_split": "dev",
|
842 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
843 |
+
"doc_to_target": "answer",
|
844 |
+
"doc_to_choice": [
|
845 |
+
"A",
|
846 |
+
"B",
|
847 |
+
"C",
|
848 |
+
"D"
|
849 |
+
],
|
850 |
+
"description": "The following are multiple choice questions (with answers) about computer security.\n\n",
|
851 |
+
"target_delimiter": " ",
|
852 |
+
"fewshot_delimiter": "\n\n",
|
853 |
+
"fewshot_config": {
|
854 |
+
"sampler": "first_n"
|
855 |
+
},
|
856 |
+
"num_fewshot": 5,
|
857 |
+
"metric_list": [
|
858 |
+
{
|
859 |
+
"metric": "acc",
|
860 |
+
"aggregation": "mean",
|
861 |
+
"higher_is_better": true
|
862 |
+
}
|
863 |
+
],
|
864 |
+
"output_type": "multiple_choice",
|
865 |
+
"repeats": 1,
|
866 |
+
"should_decontaminate": false,
|
867 |
+
"metadata": {
|
868 |
+
"version": 0.0
|
869 |
+
}
|
870 |
+
},
|
871 |
+
"mmlu_conceptual_physics": {
|
872 |
+
"task": "mmlu_conceptual_physics",
|
873 |
+
"task_alias": "conceptual_physics",
|
874 |
+
"group": "mmlu_stem",
|
875 |
+
"group_alias": "stem",
|
876 |
+
"dataset_path": "hails/mmlu_no_train",
|
877 |
+
"dataset_name": "conceptual_physics",
|
878 |
+
"test_split": "test",
|
879 |
+
"fewshot_split": "dev",
|
880 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
881 |
+
"doc_to_target": "answer",
|
882 |
+
"doc_to_choice": [
|
883 |
+
"A",
|
884 |
+
"B",
|
885 |
+
"C",
|
886 |
+
"D"
|
887 |
+
],
|
888 |
+
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
|
889 |
+
"target_delimiter": " ",
|
890 |
+
"fewshot_delimiter": "\n\n",
|
891 |
+
"fewshot_config": {
|
892 |
+
"sampler": "first_n"
|
893 |
+
},
|
894 |
+
"num_fewshot": 5,
|
895 |
+
"metric_list": [
|
896 |
+
{
|
897 |
+
"metric": "acc",
|
898 |
+
"aggregation": "mean",
|
899 |
+
"higher_is_better": true
|
900 |
+
}
|
901 |
+
],
|
902 |
+
"output_type": "multiple_choice",
|
903 |
+
"repeats": 1,
|
904 |
+
"should_decontaminate": false,
|
905 |
+
"metadata": {
|
906 |
+
"version": 0.0
|
907 |
+
}
|
908 |
+
},
|
909 |
+
"mmlu_econometrics": {
|
910 |
+
"task": "mmlu_econometrics",
|
911 |
+
"task_alias": "econometrics",
|
912 |
+
"group": "mmlu_social_sciences",
|
913 |
+
"group_alias": "social_sciences",
|
914 |
+
"dataset_path": "hails/mmlu_no_train",
|
915 |
+
"dataset_name": "econometrics",
|
916 |
+
"test_split": "test",
|
917 |
+
"fewshot_split": "dev",
|
918 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
919 |
+
"doc_to_target": "answer",
|
920 |
+
"doc_to_choice": [
|
921 |
+
"A",
|
922 |
+
"B",
|
923 |
+
"C",
|
924 |
+
"D"
|
925 |
+
],
|
926 |
+
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
|
927 |
+
"target_delimiter": " ",
|
928 |
+
"fewshot_delimiter": "\n\n",
|
929 |
+
"fewshot_config": {
|
930 |
+
"sampler": "first_n"
|
931 |
+
},
|
932 |
+
"num_fewshot": 5,
|
933 |
+
"metric_list": [
|
934 |
+
{
|
935 |
+
"metric": "acc",
|
936 |
+
"aggregation": "mean",
|
937 |
+
"higher_is_better": true
|
938 |
+
}
|
939 |
+
],
|
940 |
+
"output_type": "multiple_choice",
|
941 |
+
"repeats": 1,
|
942 |
+
"should_decontaminate": false,
|
943 |
+
"metadata": {
|
944 |
+
"version": 0.0
|
945 |
+
}
|
946 |
+
},
|
947 |
+
"mmlu_electrical_engineering": {
|
948 |
+
"task": "mmlu_electrical_engineering",
|
949 |
+
"task_alias": "electrical_engineering",
|
950 |
+
"group": "mmlu_stem",
|
951 |
+
"group_alias": "stem",
|
952 |
+
"dataset_path": "hails/mmlu_no_train",
|
953 |
+
"dataset_name": "electrical_engineering",
|
954 |
+
"test_split": "test",
|
955 |
+
"fewshot_split": "dev",
|
956 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
957 |
+
"doc_to_target": "answer",
|
958 |
+
"doc_to_choice": [
|
959 |
+
"A",
|
960 |
+
"B",
|
961 |
+
"C",
|
962 |
+
"D"
|
963 |
+
],
|
964 |
+
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
|
965 |
+
"target_delimiter": " ",
|
966 |
+
"fewshot_delimiter": "\n\n",
|
967 |
+
"fewshot_config": {
|
968 |
+
"sampler": "first_n"
|
969 |
+
},
|
970 |
+
"num_fewshot": 5,
|
971 |
+
"metric_list": [
|
972 |
+
{
|
973 |
+
"metric": "acc",
|
974 |
+
"aggregation": "mean",
|
975 |
+
"higher_is_better": true
|
976 |
+
}
|
977 |
+
],
|
978 |
+
"output_type": "multiple_choice",
|
979 |
+
"repeats": 1,
|
980 |
+
"should_decontaminate": false,
|
981 |
+
"metadata": {
|
982 |
+
"version": 0.0
|
983 |
+
}
|
984 |
+
},
|
985 |
+
"mmlu_elementary_mathematics": {
|
986 |
+
"task": "mmlu_elementary_mathematics",
|
987 |
+
"task_alias": "elementary_mathematics",
|
988 |
+
"group": "mmlu_stem",
|
989 |
+
"group_alias": "stem",
|
990 |
+
"dataset_path": "hails/mmlu_no_train",
|
991 |
+
"dataset_name": "elementary_mathematics",
|
992 |
+
"test_split": "test",
|
993 |
+
"fewshot_split": "dev",
|
994 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
995 |
+
"doc_to_target": "answer",
|
996 |
+
"doc_to_choice": [
|
997 |
+
"A",
|
998 |
+
"B",
|
999 |
+
"C",
|
1000 |
+
"D"
|
1001 |
+
],
|
1002 |
+
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
|
1003 |
+
"target_delimiter": " ",
|
1004 |
+
"fewshot_delimiter": "\n\n",
|
1005 |
+
"fewshot_config": {
|
1006 |
+
"sampler": "first_n"
|
1007 |
+
},
|
1008 |
+
"num_fewshot": 5,
|
1009 |
+
"metric_list": [
|
1010 |
+
{
|
1011 |
+
"metric": "acc",
|
1012 |
+
"aggregation": "mean",
|
1013 |
+
"higher_is_better": true
|
1014 |
+
}
|
1015 |
+
],
|
1016 |
+
"output_type": "multiple_choice",
|
1017 |
+
"repeats": 1,
|
1018 |
+
"should_decontaminate": false,
|
1019 |
+
"metadata": {
|
1020 |
+
"version": 0.0
|
1021 |
+
}
|
1022 |
+
},
|
1023 |
+
"mmlu_formal_logic": {
|
1024 |
+
"task": "mmlu_formal_logic",
|
1025 |
+
"task_alias": "formal_logic",
|
1026 |
+
"group": "mmlu_humanities",
|
1027 |
+
"group_alias": "humanities",
|
1028 |
+
"dataset_path": "hails/mmlu_no_train",
|
1029 |
+
"dataset_name": "formal_logic",
|
1030 |
+
"test_split": "test",
|
1031 |
+
"fewshot_split": "dev",
|
1032 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1033 |
+
"doc_to_target": "answer",
|
1034 |
+
"doc_to_choice": [
|
1035 |
+
"A",
|
1036 |
+
"B",
|
1037 |
+
"C",
|
1038 |
+
"D"
|
1039 |
+
],
|
1040 |
+
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
|
1041 |
+
"target_delimiter": " ",
|
1042 |
+
"fewshot_delimiter": "\n\n",
|
1043 |
+
"fewshot_config": {
|
1044 |
+
"sampler": "first_n"
|
1045 |
+
},
|
1046 |
+
"num_fewshot": 5,
|
1047 |
+
"metric_list": [
|
1048 |
+
{
|
1049 |
+
"metric": "acc",
|
1050 |
+
"aggregation": "mean",
|
1051 |
+
"higher_is_better": true
|
1052 |
+
}
|
1053 |
+
],
|
1054 |
+
"output_type": "multiple_choice",
|
1055 |
+
"repeats": 1,
|
1056 |
+
"should_decontaminate": false,
|
1057 |
+
"metadata": {
|
1058 |
+
"version": 0.0
|
1059 |
+
}
|
1060 |
+
},
|
1061 |
+
"mmlu_global_facts": {
|
1062 |
+
"task": "mmlu_global_facts",
|
1063 |
+
"task_alias": "global_facts",
|
1064 |
+
"group": "mmlu_other",
|
1065 |
+
"group_alias": "other",
|
1066 |
+
"dataset_path": "hails/mmlu_no_train",
|
1067 |
+
"dataset_name": "global_facts",
|
1068 |
+
"test_split": "test",
|
1069 |
+
"fewshot_split": "dev",
|
1070 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1071 |
+
"doc_to_target": "answer",
|
1072 |
+
"doc_to_choice": [
|
1073 |
+
"A",
|
1074 |
+
"B",
|
1075 |
+
"C",
|
1076 |
+
"D"
|
1077 |
+
],
|
1078 |
+
"description": "The following are multiple choice questions (with answers) about global facts.\n\n",
|
1079 |
+
"target_delimiter": " ",
|
1080 |
+
"fewshot_delimiter": "\n\n",
|
1081 |
+
"fewshot_config": {
|
1082 |
+
"sampler": "first_n"
|
1083 |
+
},
|
1084 |
+
"num_fewshot": 5,
|
1085 |
+
"metric_list": [
|
1086 |
+
{
|
1087 |
+
"metric": "acc",
|
1088 |
+
"aggregation": "mean",
|
1089 |
+
"higher_is_better": true
|
1090 |
+
}
|
1091 |
+
],
|
1092 |
+
"output_type": "multiple_choice",
|
1093 |
+
"repeats": 1,
|
1094 |
+
"should_decontaminate": false,
|
1095 |
+
"metadata": {
|
1096 |
+
"version": 0.0
|
1097 |
+
}
|
1098 |
+
},
|
1099 |
+
"mmlu_high_school_biology": {
|
1100 |
+
"task": "mmlu_high_school_biology",
|
1101 |
+
"task_alias": "high_school_biology",
|
1102 |
+
"group": "mmlu_stem",
|
1103 |
+
"group_alias": "stem",
|
1104 |
+
"dataset_path": "hails/mmlu_no_train",
|
1105 |
+
"dataset_name": "high_school_biology",
|
1106 |
+
"test_split": "test",
|
1107 |
+
"fewshot_split": "dev",
|
1108 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1109 |
+
"doc_to_target": "answer",
|
1110 |
+
"doc_to_choice": [
|
1111 |
+
"A",
|
1112 |
+
"B",
|
1113 |
+
"C",
|
1114 |
+
"D"
|
1115 |
+
],
|
1116 |
+
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
|
1117 |
+
"target_delimiter": " ",
|
1118 |
+
"fewshot_delimiter": "\n\n",
|
1119 |
+
"fewshot_config": {
|
1120 |
+
"sampler": "first_n"
|
1121 |
+
},
|
1122 |
+
"num_fewshot": 5,
|
1123 |
+
"metric_list": [
|
1124 |
+
{
|
1125 |
+
"metric": "acc",
|
1126 |
+
"aggregation": "mean",
|
1127 |
+
"higher_is_better": true
|
1128 |
+
}
|
1129 |
+
],
|
1130 |
+
"output_type": "multiple_choice",
|
1131 |
+
"repeats": 1,
|
1132 |
+
"should_decontaminate": false,
|
1133 |
+
"metadata": {
|
1134 |
+
"version": 0.0
|
1135 |
+
}
|
1136 |
+
},
|
1137 |
+
"mmlu_high_school_chemistry": {
|
1138 |
+
"task": "mmlu_high_school_chemistry",
|
1139 |
+
"task_alias": "high_school_chemistry",
|
1140 |
+
"group": "mmlu_stem",
|
1141 |
+
"group_alias": "stem",
|
1142 |
+
"dataset_path": "hails/mmlu_no_train",
|
1143 |
+
"dataset_name": "high_school_chemistry",
|
1144 |
+
"test_split": "test",
|
1145 |
+
"fewshot_split": "dev",
|
1146 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1147 |
+
"doc_to_target": "answer",
|
1148 |
+
"doc_to_choice": [
|
1149 |
+
"A",
|
1150 |
+
"B",
|
1151 |
+
"C",
|
1152 |
+
"D"
|
1153 |
+
],
|
1154 |
+
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
|
1155 |
+
"target_delimiter": " ",
|
1156 |
+
"fewshot_delimiter": "\n\n",
|
1157 |
+
"fewshot_config": {
|
1158 |
+
"sampler": "first_n"
|
1159 |
+
},
|
1160 |
+
"num_fewshot": 5,
|
1161 |
+
"metric_list": [
|
1162 |
+
{
|
1163 |
+
"metric": "acc",
|
1164 |
+
"aggregation": "mean",
|
1165 |
+
"higher_is_better": true
|
1166 |
+
}
|
1167 |
+
],
|
1168 |
+
"output_type": "multiple_choice",
|
1169 |
+
"repeats": 1,
|
1170 |
+
"should_decontaminate": false,
|
1171 |
+
"metadata": {
|
1172 |
+
"version": 0.0
|
1173 |
+
}
|
1174 |
+
},
|
1175 |
+
"mmlu_high_school_computer_science": {
|
1176 |
+
"task": "mmlu_high_school_computer_science",
|
1177 |
+
"task_alias": "high_school_computer_science",
|
1178 |
+
"group": "mmlu_stem",
|
1179 |
+
"group_alias": "stem",
|
1180 |
+
"dataset_path": "hails/mmlu_no_train",
|
1181 |
+
"dataset_name": "high_school_computer_science",
|
1182 |
+
"test_split": "test",
|
1183 |
+
"fewshot_split": "dev",
|
1184 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1185 |
+
"doc_to_target": "answer",
|
1186 |
+
"doc_to_choice": [
|
1187 |
+
"A",
|
1188 |
+
"B",
|
1189 |
+
"C",
|
1190 |
+
"D"
|
1191 |
+
],
|
1192 |
+
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
|
1193 |
+
"target_delimiter": " ",
|
1194 |
+
"fewshot_delimiter": "\n\n",
|
1195 |
+
"fewshot_config": {
|
1196 |
+
"sampler": "first_n"
|
1197 |
+
},
|
1198 |
+
"num_fewshot": 5,
|
1199 |
+
"metric_list": [
|
1200 |
+
{
|
1201 |
+
"metric": "acc",
|
1202 |
+
"aggregation": "mean",
|
1203 |
+
"higher_is_better": true
|
1204 |
+
}
|
1205 |
+
],
|
1206 |
+
"output_type": "multiple_choice",
|
1207 |
+
"repeats": 1,
|
1208 |
+
"should_decontaminate": false,
|
1209 |
+
"metadata": {
|
1210 |
+
"version": 0.0
|
1211 |
+
}
|
1212 |
+
},
|
1213 |
+
"mmlu_high_school_european_history": {
|
1214 |
+
"task": "mmlu_high_school_european_history",
|
1215 |
+
"task_alias": "high_school_european_history",
|
1216 |
+
"group": "mmlu_humanities",
|
1217 |
+
"group_alias": "humanities",
|
1218 |
+
"dataset_path": "hails/mmlu_no_train",
|
1219 |
+
"dataset_name": "high_school_european_history",
|
1220 |
+
"test_split": "test",
|
1221 |
+
"fewshot_split": "dev",
|
1222 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1223 |
+
"doc_to_target": "answer",
|
1224 |
+
"doc_to_choice": [
|
1225 |
+
"A",
|
1226 |
+
"B",
|
1227 |
+
"C",
|
1228 |
+
"D"
|
1229 |
+
],
|
1230 |
+
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
|
1231 |
+
"target_delimiter": " ",
|
1232 |
+
"fewshot_delimiter": "\n\n",
|
1233 |
+
"fewshot_config": {
|
1234 |
+
"sampler": "first_n"
|
1235 |
+
},
|
1236 |
+
"num_fewshot": 5,
|
1237 |
+
"metric_list": [
|
1238 |
+
{
|
1239 |
+
"metric": "acc",
|
1240 |
+
"aggregation": "mean",
|
1241 |
+
"higher_is_better": true
|
1242 |
+
}
|
1243 |
+
],
|
1244 |
+
"output_type": "multiple_choice",
|
1245 |
+
"repeats": 1,
|
1246 |
+
"should_decontaminate": false,
|
1247 |
+
"metadata": {
|
1248 |
+
"version": 0.0
|
1249 |
+
}
|
1250 |
+
},
|
1251 |
+
"mmlu_high_school_geography": {
|
1252 |
+
"task": "mmlu_high_school_geography",
|
1253 |
+
"task_alias": "high_school_geography",
|
1254 |
+
"group": "mmlu_social_sciences",
|
1255 |
+
"group_alias": "social_sciences",
|
1256 |
+
"dataset_path": "hails/mmlu_no_train",
|
1257 |
+
"dataset_name": "high_school_geography",
|
1258 |
+
"test_split": "test",
|
1259 |
+
"fewshot_split": "dev",
|
1260 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1261 |
+
"doc_to_target": "answer",
|
1262 |
+
"doc_to_choice": [
|
1263 |
+
"A",
|
1264 |
+
"B",
|
1265 |
+
"C",
|
1266 |
+
"D"
|
1267 |
+
],
|
1268 |
+
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
|
1269 |
+
"target_delimiter": " ",
|
1270 |
+
"fewshot_delimiter": "\n\n",
|
1271 |
+
"fewshot_config": {
|
1272 |
+
"sampler": "first_n"
|
1273 |
+
},
|
1274 |
+
"num_fewshot": 5,
|
1275 |
+
"metric_list": [
|
1276 |
+
{
|
1277 |
+
"metric": "acc",
|
1278 |
+
"aggregation": "mean",
|
1279 |
+
"higher_is_better": true
|
1280 |
+
}
|
1281 |
+
],
|
1282 |
+
"output_type": "multiple_choice",
|
1283 |
+
"repeats": 1,
|
1284 |
+
"should_decontaminate": false,
|
1285 |
+
"metadata": {
|
1286 |
+
"version": 0.0
|
1287 |
+
}
|
1288 |
+
},
|
1289 |
+
"mmlu_high_school_government_and_politics": {
|
1290 |
+
"task": "mmlu_high_school_government_and_politics",
|
1291 |
+
"task_alias": "high_school_government_and_politics",
|
1292 |
+
"group": "mmlu_social_sciences",
|
1293 |
+
"group_alias": "social_sciences",
|
1294 |
+
"dataset_path": "hails/mmlu_no_train",
|
1295 |
+
"dataset_name": "high_school_government_and_politics",
|
1296 |
+
"test_split": "test",
|
1297 |
+
"fewshot_split": "dev",
|
1298 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1299 |
+
"doc_to_target": "answer",
|
1300 |
+
"doc_to_choice": [
|
1301 |
+
"A",
|
1302 |
+
"B",
|
1303 |
+
"C",
|
1304 |
+
"D"
|
1305 |
+
],
|
1306 |
+
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
|
1307 |
+
"target_delimiter": " ",
|
1308 |
+
"fewshot_delimiter": "\n\n",
|
1309 |
+
"fewshot_config": {
|
1310 |
+
"sampler": "first_n"
|
1311 |
+
},
|
1312 |
+
"num_fewshot": 5,
|
1313 |
+
"metric_list": [
|
1314 |
+
{
|
1315 |
+
"metric": "acc",
|
1316 |
+
"aggregation": "mean",
|
1317 |
+
"higher_is_better": true
|
1318 |
+
}
|
1319 |
+
],
|
1320 |
+
"output_type": "multiple_choice",
|
1321 |
+
"repeats": 1,
|
1322 |
+
"should_decontaminate": false,
|
1323 |
+
"metadata": {
|
1324 |
+
"version": 0.0
|
1325 |
+
}
|
1326 |
+
},
|
1327 |
+
"mmlu_high_school_macroeconomics": {
|
1328 |
+
"task": "mmlu_high_school_macroeconomics",
|
1329 |
+
"task_alias": "high_school_macroeconomics",
|
1330 |
+
"group": "mmlu_social_sciences",
|
1331 |
+
"group_alias": "social_sciences",
|
1332 |
+
"dataset_path": "hails/mmlu_no_train",
|
1333 |
+
"dataset_name": "high_school_macroeconomics",
|
1334 |
+
"test_split": "test",
|
1335 |
+
"fewshot_split": "dev",
|
1336 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1337 |
+
"doc_to_target": "answer",
|
1338 |
+
"doc_to_choice": [
|
1339 |
+
"A",
|
1340 |
+
"B",
|
1341 |
+
"C",
|
1342 |
+
"D"
|
1343 |
+
],
|
1344 |
+
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
|
1345 |
+
"target_delimiter": " ",
|
1346 |
+
"fewshot_delimiter": "\n\n",
|
1347 |
+
"fewshot_config": {
|
1348 |
+
"sampler": "first_n"
|
1349 |
+
},
|
1350 |
+
"num_fewshot": 5,
|
1351 |
+
"metric_list": [
|
1352 |
+
{
|
1353 |
+
"metric": "acc",
|
1354 |
+
"aggregation": "mean",
|
1355 |
+
"higher_is_better": true
|
1356 |
+
}
|
1357 |
+
],
|
1358 |
+
"output_type": "multiple_choice",
|
1359 |
+
"repeats": 1,
|
1360 |
+
"should_decontaminate": false,
|
1361 |
+
"metadata": {
|
1362 |
+
"version": 0.0
|
1363 |
+
}
|
1364 |
+
},
|
1365 |
+
"mmlu_high_school_mathematics": {
|
1366 |
+
"task": "mmlu_high_school_mathematics",
|
1367 |
+
"task_alias": "high_school_mathematics",
|
1368 |
+
"group": "mmlu_stem",
|
1369 |
+
"group_alias": "stem",
|
1370 |
+
"dataset_path": "hails/mmlu_no_train",
|
1371 |
+
"dataset_name": "high_school_mathematics",
|
1372 |
+
"test_split": "test",
|
1373 |
+
"fewshot_split": "dev",
|
1374 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1375 |
+
"doc_to_target": "answer",
|
1376 |
+
"doc_to_choice": [
|
1377 |
+
"A",
|
1378 |
+
"B",
|
1379 |
+
"C",
|
1380 |
+
"D"
|
1381 |
+
],
|
1382 |
+
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
|
1383 |
+
"target_delimiter": " ",
|
1384 |
+
"fewshot_delimiter": "\n\n",
|
1385 |
+
"fewshot_config": {
|
1386 |
+
"sampler": "first_n"
|
1387 |
+
},
|
1388 |
+
"num_fewshot": 5,
|
1389 |
+
"metric_list": [
|
1390 |
+
{
|
1391 |
+
"metric": "acc",
|
1392 |
+
"aggregation": "mean",
|
1393 |
+
"higher_is_better": true
|
1394 |
+
}
|
1395 |
+
],
|
1396 |
+
"output_type": "multiple_choice",
|
1397 |
+
"repeats": 1,
|
1398 |
+
"should_decontaminate": false,
|
1399 |
+
"metadata": {
|
1400 |
+
"version": 0.0
|
1401 |
+
}
|
1402 |
+
},
|
1403 |
+
"mmlu_high_school_microeconomics": {
|
1404 |
+
"task": "mmlu_high_school_microeconomics",
|
1405 |
+
"task_alias": "high_school_microeconomics",
|
1406 |
+
"group": "mmlu_social_sciences",
|
1407 |
+
"group_alias": "social_sciences",
|
1408 |
+
"dataset_path": "hails/mmlu_no_train",
|
1409 |
+
"dataset_name": "high_school_microeconomics",
|
1410 |
+
"test_split": "test",
|
1411 |
+
"fewshot_split": "dev",
|
1412 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1413 |
+
"doc_to_target": "answer",
|
1414 |
+
"doc_to_choice": [
|
1415 |
+
"A",
|
1416 |
+
"B",
|
1417 |
+
"C",
|
1418 |
+
"D"
|
1419 |
+
],
|
1420 |
+
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
|
1421 |
+
"target_delimiter": " ",
|
1422 |
+
"fewshot_delimiter": "\n\n",
|
1423 |
+
"fewshot_config": {
|
1424 |
+
"sampler": "first_n"
|
1425 |
+
},
|
1426 |
+
"num_fewshot": 5,
|
1427 |
+
"metric_list": [
|
1428 |
+
{
|
1429 |
+
"metric": "acc",
|
1430 |
+
"aggregation": "mean",
|
1431 |
+
"higher_is_better": true
|
1432 |
+
}
|
1433 |
+
],
|
1434 |
+
"output_type": "multiple_choice",
|
1435 |
+
"repeats": 1,
|
1436 |
+
"should_decontaminate": false,
|
1437 |
+
"metadata": {
|
1438 |
+
"version": 0.0
|
1439 |
+
}
|
1440 |
+
},
|
1441 |
+
"mmlu_high_school_physics": {
|
1442 |
+
"task": "mmlu_high_school_physics",
|
1443 |
+
"task_alias": "high_school_physics",
|
1444 |
+
"group": "mmlu_stem",
|
1445 |
+
"group_alias": "stem",
|
1446 |
+
"dataset_path": "hails/mmlu_no_train",
|
1447 |
+
"dataset_name": "high_school_physics",
|
1448 |
+
"test_split": "test",
|
1449 |
+
"fewshot_split": "dev",
|
1450 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1451 |
+
"doc_to_target": "answer",
|
1452 |
+
"doc_to_choice": [
|
1453 |
+
"A",
|
1454 |
+
"B",
|
1455 |
+
"C",
|
1456 |
+
"D"
|
1457 |
+
],
|
1458 |
+
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
|
1459 |
+
"target_delimiter": " ",
|
1460 |
+
"fewshot_delimiter": "\n\n",
|
1461 |
+
"fewshot_config": {
|
1462 |
+
"sampler": "first_n"
|
1463 |
+
},
|
1464 |
+
"num_fewshot": 5,
|
1465 |
+
"metric_list": [
|
1466 |
+
{
|
1467 |
+
"metric": "acc",
|
1468 |
+
"aggregation": "mean",
|
1469 |
+
"higher_is_better": true
|
1470 |
+
}
|
1471 |
+
],
|
1472 |
+
"output_type": "multiple_choice",
|
1473 |
+
"repeats": 1,
|
1474 |
+
"should_decontaminate": false,
|
1475 |
+
"metadata": {
|
1476 |
+
"version": 0.0
|
1477 |
+
}
|
1478 |
+
},
|
1479 |
+
"mmlu_high_school_psychology": {
|
1480 |
+
"task": "mmlu_high_school_psychology",
|
1481 |
+
"task_alias": "high_school_psychology",
|
1482 |
+
"group": "mmlu_social_sciences",
|
1483 |
+
"group_alias": "social_sciences",
|
1484 |
+
"dataset_path": "hails/mmlu_no_train",
|
1485 |
+
"dataset_name": "high_school_psychology",
|
1486 |
+
"test_split": "test",
|
1487 |
+
"fewshot_split": "dev",
|
1488 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1489 |
+
"doc_to_target": "answer",
|
1490 |
+
"doc_to_choice": [
|
1491 |
+
"A",
|
1492 |
+
"B",
|
1493 |
+
"C",
|
1494 |
+
"D"
|
1495 |
+
],
|
1496 |
+
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
|
1497 |
+
"target_delimiter": " ",
|
1498 |
+
"fewshot_delimiter": "\n\n",
|
1499 |
+
"fewshot_config": {
|
1500 |
+
"sampler": "first_n"
|
1501 |
+
},
|
1502 |
+
"num_fewshot": 5,
|
1503 |
+
"metric_list": [
|
1504 |
+
{
|
1505 |
+
"metric": "acc",
|
1506 |
+
"aggregation": "mean",
|
1507 |
+
"higher_is_better": true
|
1508 |
+
}
|
1509 |
+
],
|
1510 |
+
"output_type": "multiple_choice",
|
1511 |
+
"repeats": 1,
|
1512 |
+
"should_decontaminate": false,
|
1513 |
+
"metadata": {
|
1514 |
+
"version": 0.0
|
1515 |
+
}
|
1516 |
+
},
|
1517 |
+
"mmlu_high_school_statistics": {
|
1518 |
+
"task": "mmlu_high_school_statistics",
|
1519 |
+
"task_alias": "high_school_statistics",
|
1520 |
+
"group": "mmlu_stem",
|
1521 |
+
"group_alias": "stem",
|
1522 |
+
"dataset_path": "hails/mmlu_no_train",
|
1523 |
+
"dataset_name": "high_school_statistics",
|
1524 |
+
"test_split": "test",
|
1525 |
+
"fewshot_split": "dev",
|
1526 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1527 |
+
"doc_to_target": "answer",
|
1528 |
+
"doc_to_choice": [
|
1529 |
+
"A",
|
1530 |
+
"B",
|
1531 |
+
"C",
|
1532 |
+
"D"
|
1533 |
+
],
|
1534 |
+
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
|
1535 |
+
"target_delimiter": " ",
|
1536 |
+
"fewshot_delimiter": "\n\n",
|
1537 |
+
"fewshot_config": {
|
1538 |
+
"sampler": "first_n"
|
1539 |
+
},
|
1540 |
+
"num_fewshot": 5,
|
1541 |
+
"metric_list": [
|
1542 |
+
{
|
1543 |
+
"metric": "acc",
|
1544 |
+
"aggregation": "mean",
|
1545 |
+
"higher_is_better": true
|
1546 |
+
}
|
1547 |
+
],
|
1548 |
+
"output_type": "multiple_choice",
|
1549 |
+
"repeats": 1,
|
1550 |
+
"should_decontaminate": false,
|
1551 |
+
"metadata": {
|
1552 |
+
"version": 0.0
|
1553 |
+
}
|
1554 |
+
},
|
1555 |
+
"mmlu_high_school_us_history": {
|
1556 |
+
"task": "mmlu_high_school_us_history",
|
1557 |
+
"task_alias": "high_school_us_history",
|
1558 |
+
"group": "mmlu_humanities",
|
1559 |
+
"group_alias": "humanities",
|
1560 |
+
"dataset_path": "hails/mmlu_no_train",
|
1561 |
+
"dataset_name": "high_school_us_history",
|
1562 |
+
"test_split": "test",
|
1563 |
+
"fewshot_split": "dev",
|
1564 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1565 |
+
"doc_to_target": "answer",
|
1566 |
+
"doc_to_choice": [
|
1567 |
+
"A",
|
1568 |
+
"B",
|
1569 |
+
"C",
|
1570 |
+
"D"
|
1571 |
+
],
|
1572 |
+
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
|
1573 |
+
"target_delimiter": " ",
|
1574 |
+
"fewshot_delimiter": "\n\n",
|
1575 |
+
"fewshot_config": {
|
1576 |
+
"sampler": "first_n"
|
1577 |
+
},
|
1578 |
+
"num_fewshot": 5,
|
1579 |
+
"metric_list": [
|
1580 |
+
{
|
1581 |
+
"metric": "acc",
|
1582 |
+
"aggregation": "mean",
|
1583 |
+
"higher_is_better": true
|
1584 |
+
}
|
1585 |
+
],
|
1586 |
+
"output_type": "multiple_choice",
|
1587 |
+
"repeats": 1,
|
1588 |
+
"should_decontaminate": false,
|
1589 |
+
"metadata": {
|
1590 |
+
"version": 0.0
|
1591 |
+
}
|
1592 |
+
},
|
1593 |
+
"mmlu_high_school_world_history": {
|
1594 |
+
"task": "mmlu_high_school_world_history",
|
1595 |
+
"task_alias": "high_school_world_history",
|
1596 |
+
"group": "mmlu_humanities",
|
1597 |
+
"group_alias": "humanities",
|
1598 |
+
"dataset_path": "hails/mmlu_no_train",
|
1599 |
+
"dataset_name": "high_school_world_history",
|
1600 |
+
"test_split": "test",
|
1601 |
+
"fewshot_split": "dev",
|
1602 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1603 |
+
"doc_to_target": "answer",
|
1604 |
+
"doc_to_choice": [
|
1605 |
+
"A",
|
1606 |
+
"B",
|
1607 |
+
"C",
|
1608 |
+
"D"
|
1609 |
+
],
|
1610 |
+
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
|
1611 |
+
"target_delimiter": " ",
|
1612 |
+
"fewshot_delimiter": "\n\n",
|
1613 |
+
"fewshot_config": {
|
1614 |
+
"sampler": "first_n"
|
1615 |
+
},
|
1616 |
+
"num_fewshot": 5,
|
1617 |
+
"metric_list": [
|
1618 |
+
{
|
1619 |
+
"metric": "acc",
|
1620 |
+
"aggregation": "mean",
|
1621 |
+
"higher_is_better": true
|
1622 |
+
}
|
1623 |
+
],
|
1624 |
+
"output_type": "multiple_choice",
|
1625 |
+
"repeats": 1,
|
1626 |
+
"should_decontaminate": false,
|
1627 |
+
"metadata": {
|
1628 |
+
"version": 0.0
|
1629 |
+
}
|
1630 |
+
},
|
1631 |
+
"mmlu_human_aging": {
|
1632 |
+
"task": "mmlu_human_aging",
|
1633 |
+
"task_alias": "human_aging",
|
1634 |
+
"group": "mmlu_other",
|
1635 |
+
"group_alias": "other",
|
1636 |
+
"dataset_path": "hails/mmlu_no_train",
|
1637 |
+
"dataset_name": "human_aging",
|
1638 |
+
"test_split": "test",
|
1639 |
+
"fewshot_split": "dev",
|
1640 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1641 |
+
"doc_to_target": "answer",
|
1642 |
+
"doc_to_choice": [
|
1643 |
+
"A",
|
1644 |
+
"B",
|
1645 |
+
"C",
|
1646 |
+
"D"
|
1647 |
+
],
|
1648 |
+
"description": "The following are multiple choice questions (with answers) about human aging.\n\n",
|
1649 |
+
"target_delimiter": " ",
|
1650 |
+
"fewshot_delimiter": "\n\n",
|
1651 |
+
"fewshot_config": {
|
1652 |
+
"sampler": "first_n"
|
1653 |
+
},
|
1654 |
+
"num_fewshot": 5,
|
1655 |
+
"metric_list": [
|
1656 |
+
{
|
1657 |
+
"metric": "acc",
|
1658 |
+
"aggregation": "mean",
|
1659 |
+
"higher_is_better": true
|
1660 |
+
}
|
1661 |
+
],
|
1662 |
+
"output_type": "multiple_choice",
|
1663 |
+
"repeats": 1,
|
1664 |
+
"should_decontaminate": false,
|
1665 |
+
"metadata": {
|
1666 |
+
"version": 0.0
|
1667 |
+
}
|
1668 |
+
},
|
1669 |
+
"mmlu_human_sexuality": {
|
1670 |
+
"task": "mmlu_human_sexuality",
|
1671 |
+
"task_alias": "human_sexuality",
|
1672 |
+
"group": "mmlu_social_sciences",
|
1673 |
+
"group_alias": "social_sciences",
|
1674 |
+
"dataset_path": "hails/mmlu_no_train",
|
1675 |
+
"dataset_name": "human_sexuality",
|
1676 |
+
"test_split": "test",
|
1677 |
+
"fewshot_split": "dev",
|
1678 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1679 |
+
"doc_to_target": "answer",
|
1680 |
+
"doc_to_choice": [
|
1681 |
+
"A",
|
1682 |
+
"B",
|
1683 |
+
"C",
|
1684 |
+
"D"
|
1685 |
+
],
|
1686 |
+
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
|
1687 |
+
"target_delimiter": " ",
|
1688 |
+
"fewshot_delimiter": "\n\n",
|
1689 |
+
"fewshot_config": {
|
1690 |
+
"sampler": "first_n"
|
1691 |
+
},
|
1692 |
+
"num_fewshot": 5,
|
1693 |
+
"metric_list": [
|
1694 |
+
{
|
1695 |
+
"metric": "acc",
|
1696 |
+
"aggregation": "mean",
|
1697 |
+
"higher_is_better": true
|
1698 |
+
}
|
1699 |
+
],
|
1700 |
+
"output_type": "multiple_choice",
|
1701 |
+
"repeats": 1,
|
1702 |
+
"should_decontaminate": false,
|
1703 |
+
"metadata": {
|
1704 |
+
"version": 0.0
|
1705 |
+
}
|
1706 |
+
},
|
1707 |
+
"mmlu_international_law": {
|
1708 |
+
"task": "mmlu_international_law",
|
1709 |
+
"task_alias": "international_law",
|
1710 |
+
"group": "mmlu_humanities",
|
1711 |
+
"group_alias": "humanities",
|
1712 |
+
"dataset_path": "hails/mmlu_no_train",
|
1713 |
+
"dataset_name": "international_law",
|
1714 |
+
"test_split": "test",
|
1715 |
+
"fewshot_split": "dev",
|
1716 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1717 |
+
"doc_to_target": "answer",
|
1718 |
+
"doc_to_choice": [
|
1719 |
+
"A",
|
1720 |
+
"B",
|
1721 |
+
"C",
|
1722 |
+
"D"
|
1723 |
+
],
|
1724 |
+
"description": "The following are multiple choice questions (with answers) about international law.\n\n",
|
1725 |
+
"target_delimiter": " ",
|
1726 |
+
"fewshot_delimiter": "\n\n",
|
1727 |
+
"fewshot_config": {
|
1728 |
+
"sampler": "first_n"
|
1729 |
+
},
|
1730 |
+
"num_fewshot": 5,
|
1731 |
+
"metric_list": [
|
1732 |
+
{
|
1733 |
+
"metric": "acc",
|
1734 |
+
"aggregation": "mean",
|
1735 |
+
"higher_is_better": true
|
1736 |
+
}
|
1737 |
+
],
|
1738 |
+
"output_type": "multiple_choice",
|
1739 |
+
"repeats": 1,
|
1740 |
+
"should_decontaminate": false,
|
1741 |
+
"metadata": {
|
1742 |
+
"version": 0.0
|
1743 |
+
}
|
1744 |
+
},
|
1745 |
+
"mmlu_jurisprudence": {
|
1746 |
+
"task": "mmlu_jurisprudence",
|
1747 |
+
"task_alias": "jurisprudence",
|
1748 |
+
"group": "mmlu_humanities",
|
1749 |
+
"group_alias": "humanities",
|
1750 |
+
"dataset_path": "hails/mmlu_no_train",
|
1751 |
+
"dataset_name": "jurisprudence",
|
1752 |
+
"test_split": "test",
|
1753 |
+
"fewshot_split": "dev",
|
1754 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1755 |
+
"doc_to_target": "answer",
|
1756 |
+
"doc_to_choice": [
|
1757 |
+
"A",
|
1758 |
+
"B",
|
1759 |
+
"C",
|
1760 |
+
"D"
|
1761 |
+
],
|
1762 |
+
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
|
1763 |
+
"target_delimiter": " ",
|
1764 |
+
"fewshot_delimiter": "\n\n",
|
1765 |
+
"fewshot_config": {
|
1766 |
+
"sampler": "first_n"
|
1767 |
+
},
|
1768 |
+
"num_fewshot": 5,
|
1769 |
+
"metric_list": [
|
1770 |
+
{
|
1771 |
+
"metric": "acc",
|
1772 |
+
"aggregation": "mean",
|
1773 |
+
"higher_is_better": true
|
1774 |
+
}
|
1775 |
+
],
|
1776 |
+
"output_type": "multiple_choice",
|
1777 |
+
"repeats": 1,
|
1778 |
+
"should_decontaminate": false,
|
1779 |
+
"metadata": {
|
1780 |
+
"version": 0.0
|
1781 |
+
}
|
1782 |
+
},
|
1783 |
+
"mmlu_logical_fallacies": {
|
1784 |
+
"task": "mmlu_logical_fallacies",
|
1785 |
+
"task_alias": "logical_fallacies",
|
1786 |
+
"group": "mmlu_humanities",
|
1787 |
+
"group_alias": "humanities",
|
1788 |
+
"dataset_path": "hails/mmlu_no_train",
|
1789 |
+
"dataset_name": "logical_fallacies",
|
1790 |
+
"test_split": "test",
|
1791 |
+
"fewshot_split": "dev",
|
1792 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1793 |
+
"doc_to_target": "answer",
|
1794 |
+
"doc_to_choice": [
|
1795 |
+
"A",
|
1796 |
+
"B",
|
1797 |
+
"C",
|
1798 |
+
"D"
|
1799 |
+
],
|
1800 |
+
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
|
1801 |
+
"target_delimiter": " ",
|
1802 |
+
"fewshot_delimiter": "\n\n",
|
1803 |
+
"fewshot_config": {
|
1804 |
+
"sampler": "first_n"
|
1805 |
+
},
|
1806 |
+
"num_fewshot": 5,
|
1807 |
+
"metric_list": [
|
1808 |
+
{
|
1809 |
+
"metric": "acc",
|
1810 |
+
"aggregation": "mean",
|
1811 |
+
"higher_is_better": true
|
1812 |
+
}
|
1813 |
+
],
|
1814 |
+
"output_type": "multiple_choice",
|
1815 |
+
"repeats": 1,
|
1816 |
+
"should_decontaminate": false,
|
1817 |
+
"metadata": {
|
1818 |
+
"version": 0.0
|
1819 |
+
}
|
1820 |
+
},
|
1821 |
+
"mmlu_machine_learning": {
|
1822 |
+
"task": "mmlu_machine_learning",
|
1823 |
+
"task_alias": "machine_learning",
|
1824 |
+
"group": "mmlu_stem",
|
1825 |
+
"group_alias": "stem",
|
1826 |
+
"dataset_path": "hails/mmlu_no_train",
|
1827 |
+
"dataset_name": "machine_learning",
|
1828 |
+
"test_split": "test",
|
1829 |
+
"fewshot_split": "dev",
|
1830 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1831 |
+
"doc_to_target": "answer",
|
1832 |
+
"doc_to_choice": [
|
1833 |
+
"A",
|
1834 |
+
"B",
|
1835 |
+
"C",
|
1836 |
+
"D"
|
1837 |
+
],
|
1838 |
+
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
|
1839 |
+
"target_delimiter": " ",
|
1840 |
+
"fewshot_delimiter": "\n\n",
|
1841 |
+
"fewshot_config": {
|
1842 |
+
"sampler": "first_n"
|
1843 |
+
},
|
1844 |
+
"num_fewshot": 5,
|
1845 |
+
"metric_list": [
|
1846 |
+
{
|
1847 |
+
"metric": "acc",
|
1848 |
+
"aggregation": "mean",
|
1849 |
+
"higher_is_better": true
|
1850 |
+
}
|
1851 |
+
],
|
1852 |
+
"output_type": "multiple_choice",
|
1853 |
+
"repeats": 1,
|
1854 |
+
"should_decontaminate": false,
|
1855 |
+
"metadata": {
|
1856 |
+
"version": 0.0
|
1857 |
+
}
|
1858 |
+
},
|
1859 |
+
"mmlu_management": {
|
1860 |
+
"task": "mmlu_management",
|
1861 |
+
"task_alias": "management",
|
1862 |
+
"group": "mmlu_other",
|
1863 |
+
"group_alias": "other",
|
1864 |
+
"dataset_path": "hails/mmlu_no_train",
|
1865 |
+
"dataset_name": "management",
|
1866 |
+
"test_split": "test",
|
1867 |
+
"fewshot_split": "dev",
|
1868 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1869 |
+
"doc_to_target": "answer",
|
1870 |
+
"doc_to_choice": [
|
1871 |
+
"A",
|
1872 |
+
"B",
|
1873 |
+
"C",
|
1874 |
+
"D"
|
1875 |
+
],
|
1876 |
+
"description": "The following are multiple choice questions (with answers) about management.\n\n",
|
1877 |
+
"target_delimiter": " ",
|
1878 |
+
"fewshot_delimiter": "\n\n",
|
1879 |
+
"fewshot_config": {
|
1880 |
+
"sampler": "first_n"
|
1881 |
+
},
|
1882 |
+
"num_fewshot": 5,
|
1883 |
+
"metric_list": [
|
1884 |
+
{
|
1885 |
+
"metric": "acc",
|
1886 |
+
"aggregation": "mean",
|
1887 |
+
"higher_is_better": true
|
1888 |
+
}
|
1889 |
+
],
|
1890 |
+
"output_type": "multiple_choice",
|
1891 |
+
"repeats": 1,
|
1892 |
+
"should_decontaminate": false,
|
1893 |
+
"metadata": {
|
1894 |
+
"version": 0.0
|
1895 |
+
}
|
1896 |
+
},
|
1897 |
+
"mmlu_marketing": {
|
1898 |
+
"task": "mmlu_marketing",
|
1899 |
+
"task_alias": "marketing",
|
1900 |
+
"group": "mmlu_other",
|
1901 |
+
"group_alias": "other",
|
1902 |
+
"dataset_path": "hails/mmlu_no_train",
|
1903 |
+
"dataset_name": "marketing",
|
1904 |
+
"test_split": "test",
|
1905 |
+
"fewshot_split": "dev",
|
1906 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1907 |
+
"doc_to_target": "answer",
|
1908 |
+
"doc_to_choice": [
|
1909 |
+
"A",
|
1910 |
+
"B",
|
1911 |
+
"C",
|
1912 |
+
"D"
|
1913 |
+
],
|
1914 |
+
"description": "The following are multiple choice questions (with answers) about marketing.\n\n",
|
1915 |
+
"target_delimiter": " ",
|
1916 |
+
"fewshot_delimiter": "\n\n",
|
1917 |
+
"fewshot_config": {
|
1918 |
+
"sampler": "first_n"
|
1919 |
+
},
|
1920 |
+
"num_fewshot": 5,
|
1921 |
+
"metric_list": [
|
1922 |
+
{
|
1923 |
+
"metric": "acc",
|
1924 |
+
"aggregation": "mean",
|
1925 |
+
"higher_is_better": true
|
1926 |
+
}
|
1927 |
+
],
|
1928 |
+
"output_type": "multiple_choice",
|
1929 |
+
"repeats": 1,
|
1930 |
+
"should_decontaminate": false,
|
1931 |
+
"metadata": {
|
1932 |
+
"version": 0.0
|
1933 |
+
}
|
1934 |
+
},
|
1935 |
+
"mmlu_medical_genetics": {
|
1936 |
+
"task": "mmlu_medical_genetics",
|
1937 |
+
"task_alias": "medical_genetics",
|
1938 |
+
"group": "mmlu_other",
|
1939 |
+
"group_alias": "other",
|
1940 |
+
"dataset_path": "hails/mmlu_no_train",
|
1941 |
+
"dataset_name": "medical_genetics",
|
1942 |
+
"test_split": "test",
|
1943 |
+
"fewshot_split": "dev",
|
1944 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1945 |
+
"doc_to_target": "answer",
|
1946 |
+
"doc_to_choice": [
|
1947 |
+
"A",
|
1948 |
+
"B",
|
1949 |
+
"C",
|
1950 |
+
"D"
|
1951 |
+
],
|
1952 |
+
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
|
1953 |
+
"target_delimiter": " ",
|
1954 |
+
"fewshot_delimiter": "\n\n",
|
1955 |
+
"fewshot_config": {
|
1956 |
+
"sampler": "first_n"
|
1957 |
+
},
|
1958 |
+
"num_fewshot": 5,
|
1959 |
+
"metric_list": [
|
1960 |
+
{
|
1961 |
+
"metric": "acc",
|
1962 |
+
"aggregation": "mean",
|
1963 |
+
"higher_is_better": true
|
1964 |
+
}
|
1965 |
+
],
|
1966 |
+
"output_type": "multiple_choice",
|
1967 |
+
"repeats": 1,
|
1968 |
+
"should_decontaminate": false,
|
1969 |
+
"metadata": {
|
1970 |
+
"version": 0.0
|
1971 |
+
}
|
1972 |
+
},
|
1973 |
+
"mmlu_miscellaneous": {
|
1974 |
+
"task": "mmlu_miscellaneous",
|
1975 |
+
"task_alias": "miscellaneous",
|
1976 |
+
"group": "mmlu_other",
|
1977 |
+
"group_alias": "other",
|
1978 |
+
"dataset_path": "hails/mmlu_no_train",
|
1979 |
+
"dataset_name": "miscellaneous",
|
1980 |
+
"test_split": "test",
|
1981 |
+
"fewshot_split": "dev",
|
1982 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1983 |
+
"doc_to_target": "answer",
|
1984 |
+
"doc_to_choice": [
|
1985 |
+
"A",
|
1986 |
+
"B",
|
1987 |
+
"C",
|
1988 |
+
"D"
|
1989 |
+
],
|
1990 |
+
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
|
1991 |
+
"target_delimiter": " ",
|
1992 |
+
"fewshot_delimiter": "\n\n",
|
1993 |
+
"fewshot_config": {
|
1994 |
+
"sampler": "first_n"
|
1995 |
+
},
|
1996 |
+
"num_fewshot": 5,
|
1997 |
+
"metric_list": [
|
1998 |
+
{
|
1999 |
+
"metric": "acc",
|
2000 |
+
"aggregation": "mean",
|
2001 |
+
"higher_is_better": true
|
2002 |
+
}
|
2003 |
+
],
|
2004 |
+
"output_type": "multiple_choice",
|
2005 |
+
"repeats": 1,
|
2006 |
+
"should_decontaminate": false,
|
2007 |
+
"metadata": {
|
2008 |
+
"version": 0.0
|
2009 |
+
}
|
2010 |
+
},
|
2011 |
+
"mmlu_moral_disputes": {
|
2012 |
+
"task": "mmlu_moral_disputes",
|
2013 |
+
"task_alias": "moral_disputes",
|
2014 |
+
"group": "mmlu_humanities",
|
2015 |
+
"group_alias": "humanities",
|
2016 |
+
"dataset_path": "hails/mmlu_no_train",
|
2017 |
+
"dataset_name": "moral_disputes",
|
2018 |
+
"test_split": "test",
|
2019 |
+
"fewshot_split": "dev",
|
2020 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2021 |
+
"doc_to_target": "answer",
|
2022 |
+
"doc_to_choice": [
|
2023 |
+
"A",
|
2024 |
+
"B",
|
2025 |
+
"C",
|
2026 |
+
"D"
|
2027 |
+
],
|
2028 |
+
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
|
2029 |
+
"target_delimiter": " ",
|
2030 |
+
"fewshot_delimiter": "\n\n",
|
2031 |
+
"fewshot_config": {
|
2032 |
+
"sampler": "first_n"
|
2033 |
+
},
|
2034 |
+
"num_fewshot": 5,
|
2035 |
+
"metric_list": [
|
2036 |
+
{
|
2037 |
+
"metric": "acc",
|
2038 |
+
"aggregation": "mean",
|
2039 |
+
"higher_is_better": true
|
2040 |
+
}
|
2041 |
+
],
|
2042 |
+
"output_type": "multiple_choice",
|
2043 |
+
"repeats": 1,
|
2044 |
+
"should_decontaminate": false,
|
2045 |
+
"metadata": {
|
2046 |
+
"version": 0.0
|
2047 |
+
}
|
2048 |
+
},
|
2049 |
+
"mmlu_moral_scenarios": {
|
2050 |
+
"task": "mmlu_moral_scenarios",
|
2051 |
+
"task_alias": "moral_scenarios",
|
2052 |
+
"group": "mmlu_humanities",
|
2053 |
+
"group_alias": "humanities",
|
2054 |
+
"dataset_path": "hails/mmlu_no_train",
|
2055 |
+
"dataset_name": "moral_scenarios",
|
2056 |
+
"test_split": "test",
|
2057 |
+
"fewshot_split": "dev",
|
2058 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2059 |
+
"doc_to_target": "answer",
|
2060 |
+
"doc_to_choice": [
|
2061 |
+
"A",
|
2062 |
+
"B",
|
2063 |
+
"C",
|
2064 |
+
"D"
|
2065 |
+
],
|
2066 |
+
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
|
2067 |
+
"target_delimiter": " ",
|
2068 |
+
"fewshot_delimiter": "\n\n",
|
2069 |
+
"fewshot_config": {
|
2070 |
+
"sampler": "first_n"
|
2071 |
+
},
|
2072 |
+
"num_fewshot": 5,
|
2073 |
+
"metric_list": [
|
2074 |
+
{
|
2075 |
+
"metric": "acc",
|
2076 |
+
"aggregation": "mean",
|
2077 |
+
"higher_is_better": true
|
2078 |
+
}
|
2079 |
+
],
|
2080 |
+
"output_type": "multiple_choice",
|
2081 |
+
"repeats": 1,
|
2082 |
+
"should_decontaminate": false,
|
2083 |
+
"metadata": {
|
2084 |
+
"version": 0.0
|
2085 |
+
}
|
2086 |
+
},
|
2087 |
+
"mmlu_nutrition": {
|
2088 |
+
"task": "mmlu_nutrition",
|
2089 |
+
"task_alias": "nutrition",
|
2090 |
+
"group": "mmlu_other",
|
2091 |
+
"group_alias": "other",
|
2092 |
+
"dataset_path": "hails/mmlu_no_train",
|
2093 |
+
"dataset_name": "nutrition",
|
2094 |
+
"test_split": "test",
|
2095 |
+
"fewshot_split": "dev",
|
2096 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2097 |
+
"doc_to_target": "answer",
|
2098 |
+
"doc_to_choice": [
|
2099 |
+
"A",
|
2100 |
+
"B",
|
2101 |
+
"C",
|
2102 |
+
"D"
|
2103 |
+
],
|
2104 |
+
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
|
2105 |
+
"target_delimiter": " ",
|
2106 |
+
"fewshot_delimiter": "\n\n",
|
2107 |
+
"fewshot_config": {
|
2108 |
+
"sampler": "first_n"
|
2109 |
+
},
|
2110 |
+
"num_fewshot": 5,
|
2111 |
+
"metric_list": [
|
2112 |
+
{
|
2113 |
+
"metric": "acc",
|
2114 |
+
"aggregation": "mean",
|
2115 |
+
"higher_is_better": true
|
2116 |
+
}
|
2117 |
+
],
|
2118 |
+
"output_type": "multiple_choice",
|
2119 |
+
"repeats": 1,
|
2120 |
+
"should_decontaminate": false,
|
2121 |
+
"metadata": {
|
2122 |
+
"version": 0.0
|
2123 |
+
}
|
2124 |
+
},
|
2125 |
+
"mmlu_philosophy": {
|
2126 |
+
"task": "mmlu_philosophy",
|
2127 |
+
"task_alias": "philosophy",
|
2128 |
+
"group": "mmlu_humanities",
|
2129 |
+
"group_alias": "humanities",
|
2130 |
+
"dataset_path": "hails/mmlu_no_train",
|
2131 |
+
"dataset_name": "philosophy",
|
2132 |
+
"test_split": "test",
|
2133 |
+
"fewshot_split": "dev",
|
2134 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2135 |
+
"doc_to_target": "answer",
|
2136 |
+
"doc_to_choice": [
|
2137 |
+
"A",
|
2138 |
+
"B",
|
2139 |
+
"C",
|
2140 |
+
"D"
|
2141 |
+
],
|
2142 |
+
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
|
2143 |
+
"target_delimiter": " ",
|
2144 |
+
"fewshot_delimiter": "\n\n",
|
2145 |
+
"fewshot_config": {
|
2146 |
+
"sampler": "first_n"
|
2147 |
+
},
|
2148 |
+
"num_fewshot": 5,
|
2149 |
+
"metric_list": [
|
2150 |
+
{
|
2151 |
+
"metric": "acc",
|
2152 |
+
"aggregation": "mean",
|
2153 |
+
"higher_is_better": true
|
2154 |
+
}
|
2155 |
+
],
|
2156 |
+
"output_type": "multiple_choice",
|
2157 |
+
"repeats": 1,
|
2158 |
+
"should_decontaminate": false,
|
2159 |
+
"metadata": {
|
2160 |
+
"version": 0.0
|
2161 |
+
}
|
2162 |
+
},
|
2163 |
+
"mmlu_prehistory": {
|
2164 |
+
"task": "mmlu_prehistory",
|
2165 |
+
"task_alias": "prehistory",
|
2166 |
+
"group": "mmlu_humanities",
|
2167 |
+
"group_alias": "humanities",
|
2168 |
+
"dataset_path": "hails/mmlu_no_train",
|
2169 |
+
"dataset_name": "prehistory",
|
2170 |
+
"test_split": "test",
|
2171 |
+
"fewshot_split": "dev",
|
2172 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2173 |
+
"doc_to_target": "answer",
|
2174 |
+
"doc_to_choice": [
|
2175 |
+
"A",
|
2176 |
+
"B",
|
2177 |
+
"C",
|
2178 |
+
"D"
|
2179 |
+
],
|
2180 |
+
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
|
2181 |
+
"target_delimiter": " ",
|
2182 |
+
"fewshot_delimiter": "\n\n",
|
2183 |
+
"fewshot_config": {
|
2184 |
+
"sampler": "first_n"
|
2185 |
+
},
|
2186 |
+
"num_fewshot": 5,
|
2187 |
+
"metric_list": [
|
2188 |
+
{
|
2189 |
+
"metric": "acc",
|
2190 |
+
"aggregation": "mean",
|
2191 |
+
"higher_is_better": true
|
2192 |
+
}
|
2193 |
+
],
|
2194 |
+
"output_type": "multiple_choice",
|
2195 |
+
"repeats": 1,
|
2196 |
+
"should_decontaminate": false,
|
2197 |
+
"metadata": {
|
2198 |
+
"version": 0.0
|
2199 |
+
}
|
2200 |
+
},
|
2201 |
+
"mmlu_professional_accounting": {
|
2202 |
+
"task": "mmlu_professional_accounting",
|
2203 |
+
"task_alias": "professional_accounting",
|
2204 |
+
"group": "mmlu_other",
|
2205 |
+
"group_alias": "other",
|
2206 |
+
"dataset_path": "hails/mmlu_no_train",
|
2207 |
+
"dataset_name": "professional_accounting",
|
2208 |
+
"test_split": "test",
|
2209 |
+
"fewshot_split": "dev",
|
2210 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2211 |
+
"doc_to_target": "answer",
|
2212 |
+
"doc_to_choice": [
|
2213 |
+
"A",
|
2214 |
+
"B",
|
2215 |
+
"C",
|
2216 |
+
"D"
|
2217 |
+
],
|
2218 |
+
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
|
2219 |
+
"target_delimiter": " ",
|
2220 |
+
"fewshot_delimiter": "\n\n",
|
2221 |
+
"fewshot_config": {
|
2222 |
+
"sampler": "first_n"
|
2223 |
+
},
|
2224 |
+
"num_fewshot": 5,
|
2225 |
+
"metric_list": [
|
2226 |
+
{
|
2227 |
+
"metric": "acc",
|
2228 |
+
"aggregation": "mean",
|
2229 |
+
"higher_is_better": true
|
2230 |
+
}
|
2231 |
+
],
|
2232 |
+
"output_type": "multiple_choice",
|
2233 |
+
"repeats": 1,
|
2234 |
+
"should_decontaminate": false,
|
2235 |
+
"metadata": {
|
2236 |
+
"version": 0.0
|
2237 |
+
}
|
2238 |
+
},
|
2239 |
+
"mmlu_professional_law": {
|
2240 |
+
"task": "mmlu_professional_law",
|
2241 |
+
"task_alias": "professional_law",
|
2242 |
+
"group": "mmlu_humanities",
|
2243 |
+
"group_alias": "humanities",
|
2244 |
+
"dataset_path": "hails/mmlu_no_train",
|
2245 |
+
"dataset_name": "professional_law",
|
2246 |
+
"test_split": "test",
|
2247 |
+
"fewshot_split": "dev",
|
2248 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2249 |
+
"doc_to_target": "answer",
|
2250 |
+
"doc_to_choice": [
|
2251 |
+
"A",
|
2252 |
+
"B",
|
2253 |
+
"C",
|
2254 |
+
"D"
|
2255 |
+
],
|
2256 |
+
"description": "The following are multiple choice questions (with answers) about professional law.\n\n",
|
2257 |
+
"target_delimiter": " ",
|
2258 |
+
"fewshot_delimiter": "\n\n",
|
2259 |
+
"fewshot_config": {
|
2260 |
+
"sampler": "first_n"
|
2261 |
+
},
|
2262 |
+
"num_fewshot": 5,
|
2263 |
+
"metric_list": [
|
2264 |
+
{
|
2265 |
+
"metric": "acc",
|
2266 |
+
"aggregation": "mean",
|
2267 |
+
"higher_is_better": true
|
2268 |
+
}
|
2269 |
+
],
|
2270 |
+
"output_type": "multiple_choice",
|
2271 |
+
"repeats": 1,
|
2272 |
+
"should_decontaminate": false,
|
2273 |
+
"metadata": {
|
2274 |
+
"version": 0.0
|
2275 |
+
}
|
2276 |
+
},
|
2277 |
+
"mmlu_professional_medicine": {
|
2278 |
+
"task": "mmlu_professional_medicine",
|
2279 |
+
"task_alias": "professional_medicine",
|
2280 |
+
"group": "mmlu_other",
|
2281 |
+
"group_alias": "other",
|
2282 |
+
"dataset_path": "hails/mmlu_no_train",
|
2283 |
+
"dataset_name": "professional_medicine",
|
2284 |
+
"test_split": "test",
|
2285 |
+
"fewshot_split": "dev",
|
2286 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2287 |
+
"doc_to_target": "answer",
|
2288 |
+
"doc_to_choice": [
|
2289 |
+
"A",
|
2290 |
+
"B",
|
2291 |
+
"C",
|
2292 |
+
"D"
|
2293 |
+
],
|
2294 |
+
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
|
2295 |
+
"target_delimiter": " ",
|
2296 |
+
"fewshot_delimiter": "\n\n",
|
2297 |
+
"fewshot_config": {
|
2298 |
+
"sampler": "first_n"
|
2299 |
+
},
|
2300 |
+
"num_fewshot": 5,
|
2301 |
+
"metric_list": [
|
2302 |
+
{
|
2303 |
+
"metric": "acc",
|
2304 |
+
"aggregation": "mean",
|
2305 |
+
"higher_is_better": true
|
2306 |
+
}
|
2307 |
+
],
|
2308 |
+
"output_type": "multiple_choice",
|
2309 |
+
"repeats": 1,
|
2310 |
+
"should_decontaminate": false,
|
2311 |
+
"metadata": {
|
2312 |
+
"version": 0.0
|
2313 |
+
}
|
2314 |
+
},
|
2315 |
+
"mmlu_professional_psychology": {
|
2316 |
+
"task": "mmlu_professional_psychology",
|
2317 |
+
"task_alias": "professional_psychology",
|
2318 |
+
"group": "mmlu_social_sciences",
|
2319 |
+
"group_alias": "social_sciences",
|
2320 |
+
"dataset_path": "hails/mmlu_no_train",
|
2321 |
+
"dataset_name": "professional_psychology",
|
2322 |
+
"test_split": "test",
|
2323 |
+
"fewshot_split": "dev",
|
2324 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2325 |
+
"doc_to_target": "answer",
|
2326 |
+
"doc_to_choice": [
|
2327 |
+
"A",
|
2328 |
+
"B",
|
2329 |
+
"C",
|
2330 |
+
"D"
|
2331 |
+
],
|
2332 |
+
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
|
2333 |
+
"target_delimiter": " ",
|
2334 |
+
"fewshot_delimiter": "\n\n",
|
2335 |
+
"fewshot_config": {
|
2336 |
+
"sampler": "first_n"
|
2337 |
+
},
|
2338 |
+
"num_fewshot": 5,
|
2339 |
+
"metric_list": [
|
2340 |
+
{
|
2341 |
+
"metric": "acc",
|
2342 |
+
"aggregation": "mean",
|
2343 |
+
"higher_is_better": true
|
2344 |
+
}
|
2345 |
+
],
|
2346 |
+
"output_type": "multiple_choice",
|
2347 |
+
"repeats": 1,
|
2348 |
+
"should_decontaminate": false,
|
2349 |
+
"metadata": {
|
2350 |
+
"version": 0.0
|
2351 |
+
}
|
2352 |
+
},
|
2353 |
+
"mmlu_public_relations": {
|
2354 |
+
"task": "mmlu_public_relations",
|
2355 |
+
"task_alias": "public_relations",
|
2356 |
+
"group": "mmlu_social_sciences",
|
2357 |
+
"group_alias": "social_sciences",
|
2358 |
+
"dataset_path": "hails/mmlu_no_train",
|
2359 |
+
"dataset_name": "public_relations",
|
2360 |
+
"test_split": "test",
|
2361 |
+
"fewshot_split": "dev",
|
2362 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2363 |
+
"doc_to_target": "answer",
|
2364 |
+
"doc_to_choice": [
|
2365 |
+
"A",
|
2366 |
+
"B",
|
2367 |
+
"C",
|
2368 |
+
"D"
|
2369 |
+
],
|
2370 |
+
"description": "The following are multiple choice questions (with answers) about public relations.\n\n",
|
2371 |
+
"target_delimiter": " ",
|
2372 |
+
"fewshot_delimiter": "\n\n",
|
2373 |
+
"fewshot_config": {
|
2374 |
+
"sampler": "first_n"
|
2375 |
+
},
|
2376 |
+
"num_fewshot": 5,
|
2377 |
+
"metric_list": [
|
2378 |
+
{
|
2379 |
+
"metric": "acc",
|
2380 |
+
"aggregation": "mean",
|
2381 |
+
"higher_is_better": true
|
2382 |
+
}
|
2383 |
+
],
|
2384 |
+
"output_type": "multiple_choice",
|
2385 |
+
"repeats": 1,
|
2386 |
+
"should_decontaminate": false,
|
2387 |
+
"metadata": {
|
2388 |
+
"version": 0.0
|
2389 |
+
}
|
2390 |
+
},
|
2391 |
+
"mmlu_security_studies": {
|
2392 |
+
"task": "mmlu_security_studies",
|
2393 |
+
"task_alias": "security_studies",
|
2394 |
+
"group": "mmlu_social_sciences",
|
2395 |
+
"group_alias": "social_sciences",
|
2396 |
+
"dataset_path": "hails/mmlu_no_train",
|
2397 |
+
"dataset_name": "security_studies",
|
2398 |
+
"test_split": "test",
|
2399 |
+
"fewshot_split": "dev",
|
2400 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2401 |
+
"doc_to_target": "answer",
|
2402 |
+
"doc_to_choice": [
|
2403 |
+
"A",
|
2404 |
+
"B",
|
2405 |
+
"C",
|
2406 |
+
"D"
|
2407 |
+
],
|
2408 |
+
"description": "The following are multiple choice questions (with answers) about security studies.\n\n",
|
2409 |
+
"target_delimiter": " ",
|
2410 |
+
"fewshot_delimiter": "\n\n",
|
2411 |
+
"fewshot_config": {
|
2412 |
+
"sampler": "first_n"
|
2413 |
+
},
|
2414 |
+
"num_fewshot": 5,
|
2415 |
+
"metric_list": [
|
2416 |
+
{
|
2417 |
+
"metric": "acc",
|
2418 |
+
"aggregation": "mean",
|
2419 |
+
"higher_is_better": true
|
2420 |
+
}
|
2421 |
+
],
|
2422 |
+
"output_type": "multiple_choice",
|
2423 |
+
"repeats": 1,
|
2424 |
+
"should_decontaminate": false,
|
2425 |
+
"metadata": {
|
2426 |
+
"version": 0.0
|
2427 |
+
}
|
2428 |
+
},
|
2429 |
+
"mmlu_sociology": {
|
2430 |
+
"task": "mmlu_sociology",
|
2431 |
+
"task_alias": "sociology",
|
2432 |
+
"group": "mmlu_social_sciences",
|
2433 |
+
"group_alias": "social_sciences",
|
2434 |
+
"dataset_path": "hails/mmlu_no_train",
|
2435 |
+
"dataset_name": "sociology",
|
2436 |
+
"test_split": "test",
|
2437 |
+
"fewshot_split": "dev",
|
2438 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2439 |
+
"doc_to_target": "answer",
|
2440 |
+
"doc_to_choice": [
|
2441 |
+
"A",
|
2442 |
+
"B",
|
2443 |
+
"C",
|
2444 |
+
"D"
|
2445 |
+
],
|
2446 |
+
"description": "The following are multiple choice questions (with answers) about sociology.\n\n",
|
2447 |
+
"target_delimiter": " ",
|
2448 |
+
"fewshot_delimiter": "\n\n",
|
2449 |
+
"fewshot_config": {
|
2450 |
+
"sampler": "first_n"
|
2451 |
+
},
|
2452 |
+
"num_fewshot": 5,
|
2453 |
+
"metric_list": [
|
2454 |
+
{
|
2455 |
+
"metric": "acc",
|
2456 |
+
"aggregation": "mean",
|
2457 |
+
"higher_is_better": true
|
2458 |
+
}
|
2459 |
+
],
|
2460 |
+
"output_type": "multiple_choice",
|
2461 |
+
"repeats": 1,
|
2462 |
+
"should_decontaminate": false,
|
2463 |
+
"metadata": {
|
2464 |
+
"version": 0.0
|
2465 |
+
}
|
2466 |
+
},
|
2467 |
+
"mmlu_us_foreign_policy": {
|
2468 |
+
"task": "mmlu_us_foreign_policy",
|
2469 |
+
"task_alias": "us_foreign_policy",
|
2470 |
+
"group": "mmlu_social_sciences",
|
2471 |
+
"group_alias": "social_sciences",
|
2472 |
+
"dataset_path": "hails/mmlu_no_train",
|
2473 |
+
"dataset_name": "us_foreign_policy",
|
2474 |
+
"test_split": "test",
|
2475 |
+
"fewshot_split": "dev",
|
2476 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2477 |
+
"doc_to_target": "answer",
|
2478 |
+
"doc_to_choice": [
|
2479 |
+
"A",
|
2480 |
+
"B",
|
2481 |
+
"C",
|
2482 |
+
"D"
|
2483 |
+
],
|
2484 |
+
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
|
2485 |
+
"target_delimiter": " ",
|
2486 |
+
"fewshot_delimiter": "\n\n",
|
2487 |
+
"fewshot_config": {
|
2488 |
+
"sampler": "first_n"
|
2489 |
+
},
|
2490 |
+
"num_fewshot": 5,
|
2491 |
+
"metric_list": [
|
2492 |
+
{
|
2493 |
+
"metric": "acc",
|
2494 |
+
"aggregation": "mean",
|
2495 |
+
"higher_is_better": true
|
2496 |
+
}
|
2497 |
+
],
|
2498 |
+
"output_type": "multiple_choice",
|
2499 |
+
"repeats": 1,
|
2500 |
+
"should_decontaminate": false,
|
2501 |
+
"metadata": {
|
2502 |
+
"version": 0.0
|
2503 |
+
}
|
2504 |
+
},
|
2505 |
+
"mmlu_virology": {
|
2506 |
+
"task": "mmlu_virology",
|
2507 |
+
"task_alias": "virology",
|
2508 |
+
"group": "mmlu_other",
|
2509 |
+
"group_alias": "other",
|
2510 |
+
"dataset_path": "hails/mmlu_no_train",
|
2511 |
+
"dataset_name": "virology",
|
2512 |
+
"test_split": "test",
|
2513 |
+
"fewshot_split": "dev",
|
2514 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2515 |
+
"doc_to_target": "answer",
|
2516 |
+
"doc_to_choice": [
|
2517 |
+
"A",
|
2518 |
+
"B",
|
2519 |
+
"C",
|
2520 |
+
"D"
|
2521 |
+
],
|
2522 |
+
"description": "The following are multiple choice questions (with answers) about virology.\n\n",
|
2523 |
+
"target_delimiter": " ",
|
2524 |
+
"fewshot_delimiter": "\n\n",
|
2525 |
+
"fewshot_config": {
|
2526 |
+
"sampler": "first_n"
|
2527 |
+
},
|
2528 |
+
"num_fewshot": 5,
|
2529 |
+
"metric_list": [
|
2530 |
+
{
|
2531 |
+
"metric": "acc",
|
2532 |
+
"aggregation": "mean",
|
2533 |
+
"higher_is_better": true
|
2534 |
+
}
|
2535 |
+
],
|
2536 |
+
"output_type": "multiple_choice",
|
2537 |
+
"repeats": 1,
|
2538 |
+
"should_decontaminate": false,
|
2539 |
+
"metadata": {
|
2540 |
+
"version": 0.0
|
2541 |
+
}
|
2542 |
+
},
|
2543 |
+
"mmlu_world_religions": {
|
2544 |
+
"task": "mmlu_world_religions",
|
2545 |
+
"task_alias": "world_religions",
|
2546 |
+
"group": "mmlu_humanities",
|
2547 |
+
"group_alias": "humanities",
|
2548 |
+
"dataset_path": "hails/mmlu_no_train",
|
2549 |
+
"dataset_name": "world_religions",
|
2550 |
+
"test_split": "test",
|
2551 |
+
"fewshot_split": "dev",
|
2552 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2553 |
+
"doc_to_target": "answer",
|
2554 |
+
"doc_to_choice": [
|
2555 |
+
"A",
|
2556 |
+
"B",
|
2557 |
+
"C",
|
2558 |
+
"D"
|
2559 |
+
],
|
2560 |
+
"description": "The following are multiple choice questions (with answers) about world religions.\n\n",
|
2561 |
+
"target_delimiter": " ",
|
2562 |
+
"fewshot_delimiter": "\n\n",
|
2563 |
+
"fewshot_config": {
|
2564 |
+
"sampler": "first_n"
|
2565 |
+
},
|
2566 |
+
"num_fewshot": 5,
|
2567 |
+
"metric_list": [
|
2568 |
+
{
|
2569 |
+
"metric": "acc",
|
2570 |
+
"aggregation": "mean",
|
2571 |
+
"higher_is_better": true
|
2572 |
+
}
|
2573 |
+
],
|
2574 |
+
"output_type": "multiple_choice",
|
2575 |
+
"repeats": 1,
|
2576 |
+
"should_decontaminate": false,
|
2577 |
+
"metadata": {
|
2578 |
+
"version": 0.0
|
2579 |
+
}
|
2580 |
+
}
|
2581 |
+
},
|
2582 |
+
"versions": {
|
2583 |
+
"mmlu_abstract_algebra": 0.0,
|
2584 |
+
"mmlu_anatomy": 0.0,
|
2585 |
+
"mmlu_astronomy": 0.0,
|
2586 |
+
"mmlu_business_ethics": 0.0,
|
2587 |
+
"mmlu_clinical_knowledge": 0.0,
|
2588 |
+
"mmlu_college_biology": 0.0,
|
2589 |
+
"mmlu_college_chemistry": 0.0,
|
2590 |
+
"mmlu_college_computer_science": 0.0,
|
2591 |
+
"mmlu_college_mathematics": 0.0,
|
2592 |
+
"mmlu_college_medicine": 0.0,
|
2593 |
+
"mmlu_college_physics": 0.0,
|
2594 |
+
"mmlu_computer_security": 0.0,
|
2595 |
+
"mmlu_conceptual_physics": 0.0,
|
2596 |
+
"mmlu_econometrics": 0.0,
|
2597 |
+
"mmlu_electrical_engineering": 0.0,
|
2598 |
+
"mmlu_elementary_mathematics": 0.0,
|
2599 |
+
"mmlu_formal_logic": 0.0,
|
2600 |
+
"mmlu_global_facts": 0.0,
|
2601 |
+
"mmlu_high_school_biology": 0.0,
|
2602 |
+
"mmlu_high_school_chemistry": 0.0,
|
2603 |
+
"mmlu_high_school_computer_science": 0.0,
|
2604 |
+
"mmlu_high_school_european_history": 0.0,
|
2605 |
+
"mmlu_high_school_geography": 0.0,
|
2606 |
+
"mmlu_high_school_government_and_politics": 0.0,
|
2607 |
+
"mmlu_high_school_macroeconomics": 0.0,
|
2608 |
+
"mmlu_high_school_mathematics": 0.0,
|
2609 |
+
"mmlu_high_school_microeconomics": 0.0,
|
2610 |
+
"mmlu_high_school_physics": 0.0,
|
2611 |
+
"mmlu_high_school_psychology": 0.0,
|
2612 |
+
"mmlu_high_school_statistics": 0.0,
|
2613 |
+
"mmlu_high_school_us_history": 0.0,
|
2614 |
+
"mmlu_high_school_world_history": 0.0,
|
2615 |
+
"mmlu_human_aging": 0.0,
|
2616 |
+
"mmlu_human_sexuality": 0.0,
|
2617 |
+
"mmlu_international_law": 0.0,
|
2618 |
+
"mmlu_jurisprudence": 0.0,
|
2619 |
+
"mmlu_logical_fallacies": 0.0,
|
2620 |
+
"mmlu_machine_learning": 0.0,
|
2621 |
+
"mmlu_management": 0.0,
|
2622 |
+
"mmlu_marketing": 0.0,
|
2623 |
+
"mmlu_medical_genetics": 0.0,
|
2624 |
+
"mmlu_miscellaneous": 0.0,
|
2625 |
+
"mmlu_moral_disputes": 0.0,
|
2626 |
+
"mmlu_moral_scenarios": 0.0,
|
2627 |
+
"mmlu_nutrition": 0.0,
|
2628 |
+
"mmlu_philosophy": 0.0,
|
2629 |
+
"mmlu_prehistory": 0.0,
|
2630 |
+
"mmlu_professional_accounting": 0.0,
|
2631 |
+
"mmlu_professional_law": 0.0,
|
2632 |
+
"mmlu_professional_medicine": 0.0,
|
2633 |
+
"mmlu_professional_psychology": 0.0,
|
2634 |
+
"mmlu_public_relations": 0.0,
|
2635 |
+
"mmlu_security_studies": 0.0,
|
2636 |
+
"mmlu_sociology": 0.0,
|
2637 |
+
"mmlu_us_foreign_policy": 0.0,
|
2638 |
+
"mmlu_virology": 0.0,
|
2639 |
+
"mmlu_world_religions": 0.0
|
2640 |
+
},
|
2641 |
+
"n-shot": {
|
2642 |
+
"mmlu": 0,
|
2643 |
+
"mmlu_abstract_algebra": 5,
|
2644 |
+
"mmlu_anatomy": 5,
|
2645 |
+
"mmlu_astronomy": 5,
|
2646 |
+
"mmlu_business_ethics": 5,
|
2647 |
+
"mmlu_clinical_knowledge": 5,
|
2648 |
+
"mmlu_college_biology": 5,
|
2649 |
+
"mmlu_college_chemistry": 5,
|
2650 |
+
"mmlu_college_computer_science": 5,
|
2651 |
+
"mmlu_college_mathematics": 5,
|
2652 |
+
"mmlu_college_medicine": 5,
|
2653 |
+
"mmlu_college_physics": 5,
|
2654 |
+
"mmlu_computer_security": 5,
|
2655 |
+
"mmlu_conceptual_physics": 5,
|
2656 |
+
"mmlu_econometrics": 5,
|
2657 |
+
"mmlu_electrical_engineering": 5,
|
2658 |
+
"mmlu_elementary_mathematics": 5,
|
2659 |
+
"mmlu_formal_logic": 5,
|
2660 |
+
"mmlu_global_facts": 5,
|
2661 |
+
"mmlu_high_school_biology": 5,
|
2662 |
+
"mmlu_high_school_chemistry": 5,
|
2663 |
+
"mmlu_high_school_computer_science": 5,
|
2664 |
+
"mmlu_high_school_european_history": 5,
|
2665 |
+
"mmlu_high_school_geography": 5,
|
2666 |
+
"mmlu_high_school_government_and_politics": 5,
|
2667 |
+
"mmlu_high_school_macroeconomics": 5,
|
2668 |
+
"mmlu_high_school_mathematics": 5,
|
2669 |
+
"mmlu_high_school_microeconomics": 5,
|
2670 |
+
"mmlu_high_school_physics": 5,
|
2671 |
+
"mmlu_high_school_psychology": 5,
|
2672 |
+
"mmlu_high_school_statistics": 5,
|
2673 |
+
"mmlu_high_school_us_history": 5,
|
2674 |
+
"mmlu_high_school_world_history": 5,
|
2675 |
+
"mmlu_human_aging": 5,
|
2676 |
+
"mmlu_human_sexuality": 5,
|
2677 |
+
"mmlu_humanities": 5,
|
2678 |
+
"mmlu_international_law": 5,
|
2679 |
+
"mmlu_jurisprudence": 5,
|
2680 |
+
"mmlu_logical_fallacies": 5,
|
2681 |
+
"mmlu_machine_learning": 5,
|
2682 |
+
"mmlu_management": 5,
|
2683 |
+
"mmlu_marketing": 5,
|
2684 |
+
"mmlu_medical_genetics": 5,
|
2685 |
+
"mmlu_miscellaneous": 5,
|
2686 |
+
"mmlu_moral_disputes": 5,
|
2687 |
+
"mmlu_moral_scenarios": 5,
|
2688 |
+
"mmlu_nutrition": 5,
|
2689 |
+
"mmlu_other": 5,
|
2690 |
+
"mmlu_philosophy": 5,
|
2691 |
+
"mmlu_prehistory": 5,
|
2692 |
+
"mmlu_professional_accounting": 5,
|
2693 |
+
"mmlu_professional_law": 5,
|
2694 |
+
"mmlu_professional_medicine": 5,
|
2695 |
+
"mmlu_professional_psychology": 5,
|
2696 |
+
"mmlu_public_relations": 5,
|
2697 |
+
"mmlu_security_studies": 5,
|
2698 |
+
"mmlu_social_sciences": 5,
|
2699 |
+
"mmlu_sociology": 5,
|
2700 |
+
"mmlu_stem": 5,
|
2701 |
+
"mmlu_us_foreign_policy": 5,
|
2702 |
+
"mmlu_virology": 5,
|
2703 |
+
"mmlu_world_religions": 5
|
2704 |
+
},
|
2705 |
+
"higher_is_better": {
|
2706 |
+
"mmlu": {
|
2707 |
+
"acc": true
|
2708 |
+
},
|
2709 |
+
"mmlu_abstract_algebra": {
|
2710 |
+
"acc": true
|
2711 |
+
},
|
2712 |
+
"mmlu_anatomy": {
|
2713 |
+
"acc": true
|
2714 |
+
},
|
2715 |
+
"mmlu_astronomy": {
|
2716 |
+
"acc": true
|
2717 |
+
},
|
2718 |
+
"mmlu_business_ethics": {
|
2719 |
+
"acc": true
|
2720 |
+
},
|
2721 |
+
"mmlu_clinical_knowledge": {
|
2722 |
+
"acc": true
|
2723 |
+
},
|
2724 |
+
"mmlu_college_biology": {
|
2725 |
+
"acc": true
|
2726 |
+
},
|
2727 |
+
"mmlu_college_chemistry": {
|
2728 |
+
"acc": true
|
2729 |
+
},
|
2730 |
+
"mmlu_college_computer_science": {
|
2731 |
+
"acc": true
|
2732 |
+
},
|
2733 |
+
"mmlu_college_mathematics": {
|
2734 |
+
"acc": true
|
2735 |
+
},
|
2736 |
+
"mmlu_college_medicine": {
|
2737 |
+
"acc": true
|
2738 |
+
},
|
2739 |
+
"mmlu_college_physics": {
|
2740 |
+
"acc": true
|
2741 |
+
},
|
2742 |
+
"mmlu_computer_security": {
|
2743 |
+
"acc": true
|
2744 |
+
},
|
2745 |
+
"mmlu_conceptual_physics": {
|
2746 |
+
"acc": true
|
2747 |
+
},
|
2748 |
+
"mmlu_econometrics": {
|
2749 |
+
"acc": true
|
2750 |
+
},
|
2751 |
+
"mmlu_electrical_engineering": {
|
2752 |
+
"acc": true
|
2753 |
+
},
|
2754 |
+
"mmlu_elementary_mathematics": {
|
2755 |
+
"acc": true
|
2756 |
+
},
|
2757 |
+
"mmlu_formal_logic": {
|
2758 |
+
"acc": true
|
2759 |
+
},
|
2760 |
+
"mmlu_global_facts": {
|
2761 |
+
"acc": true
|
2762 |
+
},
|
2763 |
+
"mmlu_high_school_biology": {
|
2764 |
+
"acc": true
|
2765 |
+
},
|
2766 |
+
"mmlu_high_school_chemistry": {
|
2767 |
+
"acc": true
|
2768 |
+
},
|
2769 |
+
"mmlu_high_school_computer_science": {
|
2770 |
+
"acc": true
|
2771 |
+
},
|
2772 |
+
"mmlu_high_school_european_history": {
|
2773 |
+
"acc": true
|
2774 |
+
},
|
2775 |
+
"mmlu_high_school_geography": {
|
2776 |
+
"acc": true
|
2777 |
+
},
|
2778 |
+
"mmlu_high_school_government_and_politics": {
|
2779 |
+
"acc": true
|
2780 |
+
},
|
2781 |
+
"mmlu_high_school_macroeconomics": {
|
2782 |
+
"acc": true
|
2783 |
+
},
|
2784 |
+
"mmlu_high_school_mathematics": {
|
2785 |
+
"acc": true
|
2786 |
+
},
|
2787 |
+
"mmlu_high_school_microeconomics": {
|
2788 |
+
"acc": true
|
2789 |
+
},
|
2790 |
+
"mmlu_high_school_physics": {
|
2791 |
+
"acc": true
|
2792 |
+
},
|
2793 |
+
"mmlu_high_school_psychology": {
|
2794 |
+
"acc": true
|
2795 |
+
},
|
2796 |
+
"mmlu_high_school_statistics": {
|
2797 |
+
"acc": true
|
2798 |
+
},
|
2799 |
+
"mmlu_high_school_us_history": {
|
2800 |
+
"acc": true
|
2801 |
+
},
|
2802 |
+
"mmlu_high_school_world_history": {
|
2803 |
+
"acc": true
|
2804 |
+
},
|
2805 |
+
"mmlu_human_aging": {
|
2806 |
+
"acc": true
|
2807 |
+
},
|
2808 |
+
"mmlu_human_sexuality": {
|
2809 |
+
"acc": true
|
2810 |
+
},
|
2811 |
+
"mmlu_humanities": {
|
2812 |
+
"acc": true
|
2813 |
+
},
|
2814 |
+
"mmlu_international_law": {
|
2815 |
+
"acc": true
|
2816 |
+
},
|
2817 |
+
"mmlu_jurisprudence": {
|
2818 |
+
"acc": true
|
2819 |
+
},
|
2820 |
+
"mmlu_logical_fallacies": {
|
2821 |
+
"acc": true
|
2822 |
+
},
|
2823 |
+
"mmlu_machine_learning": {
|
2824 |
+
"acc": true
|
2825 |
+
},
|
2826 |
+
"mmlu_management": {
|
2827 |
+
"acc": true
|
2828 |
+
},
|
2829 |
+
"mmlu_marketing": {
|
2830 |
+
"acc": true
|
2831 |
+
},
|
2832 |
+
"mmlu_medical_genetics": {
|
2833 |
+
"acc": true
|
2834 |
+
},
|
2835 |
+
"mmlu_miscellaneous": {
|
2836 |
+
"acc": true
|
2837 |
+
},
|
2838 |
+
"mmlu_moral_disputes": {
|
2839 |
+
"acc": true
|
2840 |
+
},
|
2841 |
+
"mmlu_moral_scenarios": {
|
2842 |
+
"acc": true
|
2843 |
+
},
|
2844 |
+
"mmlu_nutrition": {
|
2845 |
+
"acc": true
|
2846 |
+
},
|
2847 |
+
"mmlu_other": {
|
2848 |
+
"acc": true
|
2849 |
+
},
|
2850 |
+
"mmlu_philosophy": {
|
2851 |
+
"acc": true
|
2852 |
+
},
|
2853 |
+
"mmlu_prehistory": {
|
2854 |
+
"acc": true
|
2855 |
+
},
|
2856 |
+
"mmlu_professional_accounting": {
|
2857 |
+
"acc": true
|
2858 |
+
},
|
2859 |
+
"mmlu_professional_law": {
|
2860 |
+
"acc": true
|
2861 |
+
},
|
2862 |
+
"mmlu_professional_medicine": {
|
2863 |
+
"acc": true
|
2864 |
+
},
|
2865 |
+
"mmlu_professional_psychology": {
|
2866 |
+
"acc": true
|
2867 |
+
},
|
2868 |
+
"mmlu_public_relations": {
|
2869 |
+
"acc": true
|
2870 |
+
},
|
2871 |
+
"mmlu_security_studies": {
|
2872 |
+
"acc": true
|
2873 |
+
},
|
2874 |
+
"mmlu_social_sciences": {
|
2875 |
+
"acc": true
|
2876 |
+
},
|
2877 |
+
"mmlu_sociology": {
|
2878 |
+
"acc": true
|
2879 |
+
},
|
2880 |
+
"mmlu_stem": {
|
2881 |
+
"acc": true
|
2882 |
+
},
|
2883 |
+
"mmlu_us_foreign_policy": {
|
2884 |
+
"acc": true
|
2885 |
+
},
|
2886 |
+
"mmlu_virology": {
|
2887 |
+
"acc": true
|
2888 |
+
},
|
2889 |
+
"mmlu_world_religions": {
|
2890 |
+
"acc": true
|
2891 |
+
}
|
2892 |
+
},
|
2893 |
+
"n-samples": {
|
2894 |
+
"mmlu_moral_scenarios": {
|
2895 |
+
"original": 895,
|
2896 |
+
"effective": 895
|
2897 |
+
},
|
2898 |
+
"mmlu_high_school_us_history": {
|
2899 |
+
"original": 204,
|
2900 |
+
"effective": 204
|
2901 |
+
},
|
2902 |
+
"mmlu_high_school_world_history": {
|
2903 |
+
"original": 237,
|
2904 |
+
"effective": 237
|
2905 |
+
},
|
2906 |
+
"mmlu_world_religions": {
|
2907 |
+
"original": 171,
|
2908 |
+
"effective": 171
|
2909 |
+
},
|
2910 |
+
"mmlu_formal_logic": {
|
2911 |
+
"original": 126,
|
2912 |
+
"effective": 126
|
2913 |
+
},
|
2914 |
+
"mmlu_moral_disputes": {
|
2915 |
+
"original": 346,
|
2916 |
+
"effective": 346
|
2917 |
+
},
|
2918 |
+
"mmlu_prehistory": {
|
2919 |
+
"original": 324,
|
2920 |
+
"effective": 324
|
2921 |
+
},
|
2922 |
+
"mmlu_international_law": {
|
2923 |
+
"original": 121,
|
2924 |
+
"effective": 121
|
2925 |
+
},
|
2926 |
+
"mmlu_logical_fallacies": {
|
2927 |
+
"original": 163,
|
2928 |
+
"effective": 163
|
2929 |
+
},
|
2930 |
+
"mmlu_professional_law": {
|
2931 |
+
"original": 1534,
|
2932 |
+
"effective": 1534
|
2933 |
+
},
|
2934 |
+
"mmlu_philosophy": {
|
2935 |
+
"original": 311,
|
2936 |
+
"effective": 311
|
2937 |
+
},
|
2938 |
+
"mmlu_high_school_european_history": {
|
2939 |
+
"original": 165,
|
2940 |
+
"effective": 165
|
2941 |
+
},
|
2942 |
+
"mmlu_jurisprudence": {
|
2943 |
+
"original": 108,
|
2944 |
+
"effective": 108
|
2945 |
+
},
|
2946 |
+
"mmlu_high_school_psychology": {
|
2947 |
+
"original": 545,
|
2948 |
+
"effective": 545
|
2949 |
+
},
|
2950 |
+
"mmlu_high_school_geography": {
|
2951 |
+
"original": 198,
|
2952 |
+
"effective": 198
|
2953 |
+
},
|
2954 |
+
"mmlu_high_school_macroeconomics": {
|
2955 |
+
"original": 390,
|
2956 |
+
"effective": 390
|
2957 |
+
},
|
2958 |
+
"mmlu_public_relations": {
|
2959 |
+
"original": 110,
|
2960 |
+
"effective": 110
|
2961 |
+
},
|
2962 |
+
"mmlu_security_studies": {
|
2963 |
+
"original": 245,
|
2964 |
+
"effective": 245
|
2965 |
+
},
|
2966 |
+
"mmlu_high_school_microeconomics": {
|
2967 |
+
"original": 238,
|
2968 |
+
"effective": 238
|
2969 |
+
},
|
2970 |
+
"mmlu_human_sexuality": {
|
2971 |
+
"original": 131,
|
2972 |
+
"effective": 131
|
2973 |
+
},
|
2974 |
+
"mmlu_sociology": {
|
2975 |
+
"original": 201,
|
2976 |
+
"effective": 201
|
2977 |
+
},
|
2978 |
+
"mmlu_professional_psychology": {
|
2979 |
+
"original": 612,
|
2980 |
+
"effective": 612
|
2981 |
+
},
|
2982 |
+
"mmlu_econometrics": {
|
2983 |
+
"original": 114,
|
2984 |
+
"effective": 114
|
2985 |
+
},
|
2986 |
+
"mmlu_us_foreign_policy": {
|
2987 |
+
"original": 100,
|
2988 |
+
"effective": 100
|
2989 |
+
},
|
2990 |
+
"mmlu_high_school_government_and_politics": {
|
2991 |
+
"original": 193,
|
2992 |
+
"effective": 193
|
2993 |
+
},
|
2994 |
+
"mmlu_marketing": {
|
2995 |
+
"original": 234,
|
2996 |
+
"effective": 234
|
2997 |
+
},
|
2998 |
+
"mmlu_professional_accounting": {
|
2999 |
+
"original": 282,
|
3000 |
+
"effective": 282
|
3001 |
+
},
|
3002 |
+
"mmlu_clinical_knowledge": {
|
3003 |
+
"original": 265,
|
3004 |
+
"effective": 265
|
3005 |
+
},
|
3006 |
+
"mmlu_college_medicine": {
|
3007 |
+
"original": 173,
|
3008 |
+
"effective": 173
|
3009 |
+
},
|
3010 |
+
"mmlu_miscellaneous": {
|
3011 |
+
"original": 783,
|
3012 |
+
"effective": 783
|
3013 |
+
},
|
3014 |
+
"mmlu_virology": {
|
3015 |
+
"original": 166,
|
3016 |
+
"effective": 166
|
3017 |
+
},
|
3018 |
+
"mmlu_business_ethics": {
|
3019 |
+
"original": 100,
|
3020 |
+
"effective": 100
|
3021 |
+
},
|
3022 |
+
"mmlu_professional_medicine": {
|
3023 |
+
"original": 272,
|
3024 |
+
"effective": 272
|
3025 |
+
},
|
3026 |
+
"mmlu_global_facts": {
|
3027 |
+
"original": 100,
|
3028 |
+
"effective": 100
|
3029 |
+
},
|
3030 |
+
"mmlu_nutrition": {
|
3031 |
+
"original": 306,
|
3032 |
+
"effective": 306
|
3033 |
+
},
|
3034 |
+
"mmlu_human_aging": {
|
3035 |
+
"original": 223,
|
3036 |
+
"effective": 223
|
3037 |
+
},
|
3038 |
+
"mmlu_management": {
|
3039 |
+
"original": 103,
|
3040 |
+
"effective": 103
|
3041 |
+
},
|
3042 |
+
"mmlu_medical_genetics": {
|
3043 |
+
"original": 100,
|
3044 |
+
"effective": 100
|
3045 |
+
},
|
3046 |
+
"mmlu_college_biology": {
|
3047 |
+
"original": 144,
|
3048 |
+
"effective": 144
|
3049 |
+
},
|
3050 |
+
"mmlu_high_school_computer_science": {
|
3051 |
+
"original": 100,
|
3052 |
+
"effective": 100
|
3053 |
+
},
|
3054 |
+
"mmlu_elementary_mathematics": {
|
3055 |
+
"original": 378,
|
3056 |
+
"effective": 378
|
3057 |
+
},
|
3058 |
+
"mmlu_astronomy": {
|
3059 |
+
"original": 152,
|
3060 |
+
"effective": 152
|
3061 |
+
},
|
3062 |
+
"mmlu_machine_learning": {
|
3063 |
+
"original": 112,
|
3064 |
+
"effective": 112
|
3065 |
+
},
|
3066 |
+
"mmlu_high_school_mathematics": {
|
3067 |
+
"original": 270,
|
3068 |
+
"effective": 270
|
3069 |
+
},
|
3070 |
+
"mmlu_electrical_engineering": {
|
3071 |
+
"original": 145,
|
3072 |
+
"effective": 145
|
3073 |
+
},
|
3074 |
+
"mmlu_college_chemistry": {
|
3075 |
+
"original": 100,
|
3076 |
+
"effective": 100
|
3077 |
+
},
|
3078 |
+
"mmlu_college_mathematics": {
|
3079 |
+
"original": 100,
|
3080 |
+
"effective": 100
|
3081 |
+
},
|
3082 |
+
"mmlu_high_school_statistics": {
|
3083 |
+
"original": 216,
|
3084 |
+
"effective": 216
|
3085 |
+
},
|
3086 |
+
"mmlu_high_school_biology": {
|
3087 |
+
"original": 310,
|
3088 |
+
"effective": 310
|
3089 |
+
},
|
3090 |
+
"mmlu_abstract_algebra": {
|
3091 |
+
"original": 100,
|
3092 |
+
"effective": 100
|
3093 |
+
},
|
3094 |
+
"mmlu_college_physics": {
|
3095 |
+
"original": 102,
|
3096 |
+
"effective": 102
|
3097 |
+
},
|
3098 |
+
"mmlu_conceptual_physics": {
|
3099 |
+
"original": 235,
|
3100 |
+
"effective": 235
|
3101 |
+
},
|
3102 |
+
"mmlu_computer_security": {
|
3103 |
+
"original": 100,
|
3104 |
+
"effective": 100
|
3105 |
+
},
|
3106 |
+
"mmlu_anatomy": {
|
3107 |
+
"original": 135,
|
3108 |
+
"effective": 135
|
3109 |
+
},
|
3110 |
+
"mmlu_college_computer_science": {
|
3111 |
+
"original": 100,
|
3112 |
+
"effective": 100
|
3113 |
+
},
|
3114 |
+
"mmlu_high_school_physics": {
|
3115 |
+
"original": 151,
|
3116 |
+
"effective": 151
|
3117 |
+
},
|
3118 |
+
"mmlu_high_school_chemistry": {
|
3119 |
+
"original": 203,
|
3120 |
+
"effective": 203
|
3121 |
+
}
|
3122 |
+
},
|
3123 |
+
"config": {
|
3124 |
+
"model": "hf",
|
3125 |
+
"model_args": "pretrained=/home/migel/Tess-v2.5-qwen2-72B-safetensors,parallelize=True",
|
3126 |
+
"model_num_parameters": 72706203648,
|
3127 |
+
"model_dtype": "torch.float16",
|
3128 |
+
"model_revision": "main",
|
3129 |
+
"model_sha": "",
|
3130 |
+
"batch_size": "8",
|
3131 |
+
"batch_sizes": [],
|
3132 |
+
"device": null,
|
3133 |
+
"use_cache": null,
|
3134 |
+
"limit": null,
|
3135 |
+
"bootstrap_iters": 100000,
|
3136 |
+
"gen_kwargs": null,
|
3137 |
+
"random_seed": 0,
|
3138 |
+
"numpy_seed": 1234,
|
3139 |
+
"torch_seed": 1234,
|
3140 |
+
"fewshot_seed": 1234
|
3141 |
+
},
|
3142 |
+
"git_hash": "b3e4c49a",
|
3143 |
+
"date": 1718167288.656124,
|
3144 |
+
"pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 20.04.6 LTS (x86_64)\nGCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.31\n\nPython version: 3.10.14 (main, Apr 6 2024, 18:45:05) [GCC 9.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1050-azure-x86_64-with-glibc2.31\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\nGPU 2: NVIDIA A100 80GB PCIe\nGPU 3: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 530.30.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nAddress sizes: 48 bits physical, 48 bits virtual\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nNUMA node(s): 4\nVendor ID: AuthenticAMD\nCPU family: 25\nModel: 1\nModel name: AMD EPYC 7V13 64-Core Processor\nStepping: 1\nCPU MHz: 2445.435\nBogoMIPS: 4890.87\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB\nL1i cache: 3 MiB\nL2 cache: 48 MiB\nL3 cache: 384 MiB\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[pip3] triton==2.3.0\n[conda] magma-cuda117 2.6.1 1 pytorch\n[conda] mkl 2022.2.1 pypi_0 pypi\n[conda] mkl-include 2022.2.1 pypi_0 pypi\n[conda] numpy 1.24.4 pypi_0 pypi\n[conda] pytorch-lightning 1.9.5 pypi_0 pypi\n[conda] torch 2.0.1 pypi_0 pypi\n[conda] torch-nebula 0.16.10 pypi_0 pypi\n[conda] torch-ort 1.17.0 pypi_0 pypi\n[conda] torchaudio 2.0.2+cu117 pypi_0 pypi\n[conda] torchdata 0.6.1 pypi_0 pypi\n[conda] torchmetrics 1.2.0 pypi_0 pypi\n[conda] torchsnapshot 0.1.0 pypi_0 pypi\n[conda] torchvision 0.15.2+cu117 pypi_0 pypi\n[conda] triton 2.0.0 pypi_0 pypi",
|
3145 |
+
"transformers_version": "4.41.1",
|
3146 |
+
"upper_git_hash": null,
|
3147 |
+
"task_hashes": {},
|
3148 |
+
"model_source": "hf",
|
3149 |
+
"model_name": "/home/migel/Tess-v2.5-qwen2-72B-safetensors",
|
3150 |
+
"model_name_sanitized": "__home__migel__Tess-v2.5-qwen2-72B-safetensors",
|
3151 |
+
"system_instruction": null,
|
3152 |
+
"system_instruction_sha": null,
|
3153 |
+
"chat_template": null,
|
3154 |
+
"chat_template_sha": null,
|
3155 |
+
"start_time": 380863.826540975,
|
3156 |
+
"end_time": 388726.503174757,
|
3157 |
+
"total_evaluation_time_seconds": "7862.676633781986"
|
3158 |
+
}
|