migtissera commited on
Commit
d6a4b1f
1 Parent(s): d0196f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -110
README.md CHANGED
@@ -8,133 +8,82 @@ model-index:
8
  results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
 
14
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
15
- <details><summary>See axolotl config</summary>
16
 
17
- axolotl version: `0.4.1`
18
- ```yaml
19
- base_model: mistralai/Codestral-22B-v0.1
20
- model_type: AutoModelForCausalLM
21
- tokenizer_type: AutoTokenizer
22
-
23
- load_in_8bit: false
24
- load_in_4bit: false
25
- strict: false
26
-
27
- datasets:
28
- - path: /home/ubuntu/Tess-3-Code/multi_turn_chatml_deepseek_coder.jsonl
29
- type: sharegpt
30
- conversation: chatml
31
- - path: /home/ubuntu/Tess-3-Code/single_turn_chatml_code_only.jsonl
32
- type: sharegpt
33
- conversation: chatml
34
- - path: /home/ubuntu/Tess-v2.5-FULL-DATASET/Trinity-33B-v1.0-chatml.jsonl
35
- type: sharegpt
36
- conversation: chatml
37
-
38
-
39
- chat_template: chatml
40
-
41
- dataset_prepared_path: last_run_prepared_codestral
42
- val_set_size: 0.0
43
- output_dir: /home/ubuntu/trinity-codestral-1
44
-
45
- sequence_len: 4096
46
- sample_packing: true
47
- pad_to_sequence_len: true
48
-
49
- gradient_accumulation_steps: 2
50
- micro_batch_size: 2
51
- num_epochs: 1
52
- logging_steps: 1
53
- optimizer: paged_adamw_32bit
54
- lr_scheduler: constant
55
- learning_rate: 1e-6
56
-
57
- wandb_project: kindo-lambda-labs
58
- wandb_watch:
59
- wandb_run_id:
60
- wandb_log_model:
61
-
62
- train_on_inputs: false
63
- group_by_length: false
64
- bf16: auto
65
- fp16:
66
- tf32: false
67
-
68
- gradient_checkpointing: true
69
- gradient_checkpointing_kwargs:
70
- use_reentrant: false
71
- early_stopping_patience:
72
- resume_from_checkpoint:
73
- local_rank:
74
- logging_steps: 1
75
- xformers_attention:
76
- flash_attention: true
77
- saves_per_epoch: 10
78
- evals_per_epoch:
79
- save_total_limit: 2
80
- save_steps:
81
- eval_sample_packing: false
82
- debug:
83
- deepspeed: /home/ubuntu/axolotl/deepspeed_configs/zero3_bf16.json
84
- weight_decay: 0.0
85
- fsdp:
86
- fsdp_config:
87
- special_tokens:
88
- bos_token: "<|im_start|>"
89
- eos_token: "<|im_end|>"
90
- pad_token: "<|end_of_text|>"
91
 
92
- ```
93
 
94
- </details><br>
95
 
96
- # home/ubuntu/trinity-codestral-1
97
 
98
- This model is a fine-tuned version of [mistralai/Codestral-22B-v0.1](https://huggingface.co/mistralai/Codestral-22B-v0.1) on the None dataset.
 
 
99
 
100
- ## Model description
101
 
102
- More information needed
 
 
 
 
 
 
103
 
104
- ## Intended uses & limitations
105
 
106
- More information needed
 
 
 
107
 
108
- ## Training and evaluation data
109
 
110
- More information needed
 
 
 
111
 
112
- ## Training procedure
 
 
 
 
 
 
113
 
114
- ### Training hyperparameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
- The following hyperparameters were used during training:
117
- - learning_rate: 1e-06
118
- - train_batch_size: 2
119
- - eval_batch_size: 2
120
- - seed: 42
121
- - distributed_type: multi-GPU
122
- - num_devices: 8
123
- - gradient_accumulation_steps: 2
124
- - total_train_batch_size: 32
125
- - total_eval_batch_size: 16
126
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
127
- - lr_scheduler_type: constant
128
- - lr_scheduler_warmup_steps: 73
129
- - num_epochs: 1
130
 
131
- ### Training results
132
 
133
 
 
 
 
 
 
134
 
135
- ### Framework versions
 
 
136
 
137
- - Transformers 4.43.4
138
- - Pytorch 2.4.0+cu121
139
- - Datasets 2.19.1
140
- - Tokenizers 0.19.1
 
8
  results: []
9
  ---
10
 
 
 
11
 
12
+ ![Trinity](https://huggingface.co/migtissera/Trinity-13B-v1.0/resolve/main/Trinity.png)
 
13
 
14
+ Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series created by [Migel Tissera](https://x.com/migtissera).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ The compute for this model was generously sponsored by [KindoAI](https://kindo.ai).
17
 
 
18
 
19
+ # Sample Inference Python Script:
20
 
21
+ ```python
22
+ import torch, json
23
+ from transformers import AutoModelForCausalLM, AutoTokenizer
24
 
25
+ model_path = "migtissera/Tess-3-Llama-3.1-405B"
26
 
27
+ model = AutoModelForCausalLM.from_pretrained(
28
+ model_path,
29
+ torch_dtype=torch.float16,
30
+ device_map="auto",
31
+ load_in_4bit=True,
32
+ trust_remote_code=False,
33
+ )
34
 
35
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=False)
36
 
37
+ terminators = [
38
+ tokenizer.convert_tokens_to_ids("<|end_of_text|>"),
39
+ tokenizer.convert_tokens_to_ids("<|eot_id|>"),
40
+ ]
41
 
 
42
 
43
+ def generate_text(instruction):
44
+ tokens = tokenizer.encode(instruction)
45
+ tokens = torch.LongTensor(tokens).unsqueeze(0)
46
+ tokens = tokens.to("cuda")
47
 
48
+ instance = {
49
+ "input_ids": tokens,
50
+ "top_p": 1.0,
51
+ "temperature": 0.75,
52
+ "generate_len": 2048,
53
+ "top_k": 50,
54
+ }
55
 
56
+ length = len(tokens[0])
57
+ with torch.no_grad():
58
+ rest = model.generate(
59
+ input_ids=tokens,
60
+ max_length=length + instance["generate_len"],
61
+ use_cache=True,
62
+ do_sample=True,
63
+ top_p=instance["top_p"],
64
+ temperature=instance["temperature"],
65
+ top_k=instance["top_k"],
66
+ num_return_sequences=1,
67
+ pad_token_id=tokenizer.eos_token_id,
68
+ eos_token_id=terminators,
69
+ )
70
+ output = rest[0][length:]
71
+ string = tokenizer.decode(output, skip_special_tokens=True)
72
+ return f"{string}"
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ conversation = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are Tess, a helful AI assitant. You always provide detailed answers without hesitation. Do not refuse.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"""
76
 
77
 
78
+ while True:
79
+ user_input = input("You: ")
80
+ llm_prompt = f"{conversation}{user_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
81
+ answer = generate_text(llm_prompt)
82
+ print(answer)
83
 
84
+ conversation = (
85
+ f"{llm_prompt}{answer}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
86
+ )
87
 
88
+ json_data = {"prompt": user_input, "answer": answer}
89
+ ```