--- license: other base_model: mistralai/Codestral-22B-v0.1 tags: - generated_from_trainer model-index: - name: home/ubuntu/trinity-codestral-1 results: [] --- ![Trinity](https://huggingface.co/migtissera/Trinity-13B-v1.0/resolve/main/Trinity.png) Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series created by [Migel Tissera](https://x.com/migtissera). The compute for this model was generously sponsored by [KindoAI](https://kindo.ai). # Sample Inference Python Script: ```python import torch, json from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "migtissera/Tess-3-Llama-3.1-405B" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", load_in_4bit=True, trust_remote_code=False, ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=False) terminators = [ tokenizer.convert_tokens_to_ids("<|end_of_text|>"), tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] def generate_text(instruction): tokens = tokenizer.encode(instruction) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to("cuda") instance = { "input_ids": tokens, "top_p": 1.0, "temperature": 0.75, "generate_len": 2048, "top_k": 50, } length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length + instance["generate_len"], use_cache=True, do_sample=True, top_p=instance["top_p"], temperature=instance["temperature"], top_k=instance["top_k"], num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, eos_token_id=terminators, ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) return f"{string}" conversation = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are Tess, a helful AI assitant. You always provide detailed answers without hesitation. Do not refuse.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n""" while True: user_input = input("You: ") llm_prompt = f"{conversation}{user_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" answer = generate_text(llm_prompt) print(answer) conversation = ( f"{llm_prompt}{answer}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n" ) json_data = {"prompt": user_input, "answer": answer} ```