|
import torch |
|
import torch.nn as nn |
|
from torchvision import transforms |
|
|
|
class Generator(nn.Module): |
|
def __init__(self, nz=128, ngf=64, nc=3): |
|
super(Generator, self).__init__() |
|
self.main = nn.Sequential( |
|
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), |
|
nn.BatchNorm2d(ngf * 8), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Dropout(0.2), |
|
|
|
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(ngf * 4), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(ngf * 2), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(ngf), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), |
|
nn.Tanh() |
|
) |
|
|
|
def forward(self, input): |
|
output = self.main(input) |
|
return output |
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.model = Generator().to(self.device) |
|
self.model.load_state_dict(torch.load("pytorch_model.bin", map_location=self.device)) |
|
|
|
def __call__(self, inputs: str): |
|
""" |
|
Args: |
|
inputs (:obj:`str`): |
|
a string containing some text |
|
Return: |
|
A :obj:`PIL.Image` with the raw image representation as PIL. |
|
""" |
|
noise = torch.randn(1, 128, 1, 1, device=self.device) |
|
with torch.no_grad(): |
|
output = self.model(noise).cpu() |
|
|
|
img = output[0] |
|
img = (img + 1) / 2 |
|
img = transforms.ToPILImage()(img) |
|
return img |