import torch from PIL import Image from torchvision import transforms import torch.nn as nn class Generator(nn.Module): def __init__(self, input_size, output_channels): super(Generator, self).__init__() # Define the architecture of the generator self.model = nn.Sequential( nn.Linear(input_size, 128), # Input layer nn.LeakyReLU(0.2), # Activation function nn.Linear(128, 256), # Hidden layer nn.BatchNorm1d(256), # Batch normalization nn.LeakyReLU(0.2), # Activation function nn.Linear(256, 512), # Hidden layer nn.BatchNorm1d(512), # Batch normalization nn.LeakyReLU(0.2), # Activation function nn.Linear(512, output_channels), # Output layer nn.Tanh() # Tanh activation for output ) def forward(self, x): # Forward pass through the generator network return self.model(x) class PreTrainedPipeline(): def __init__(self, path=""): """ Initialize model """ self.model = Generator() # Initialize your Generator model here def generate_random_image(self): """ Generate a random image using the GAN model. Return: A :obj:`PIL.Image` with the generated image. """ noise = torch.randn(1, 100, 1, 1) with torch.no_grad(): output_image = self.model(noise) # Scale generated image output_image = (output_image + 1) / 2 # Convert to PIL Image pil_image = transforms.ToPILImage()(output_image[0]) return pil_image # Example usage if __name__ == "__main__": pipeline = PreTrainedPipeline() generated_image = pipeline.generate_random_image() generated_image.save('generated_image.jpg') print("Generated image saved at 'generated_image.jpg'")