mikegarts commited on
Commit
c880d07
·
1 Parent(s): 1e45579

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 271.20 +/- 19.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f935acee040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f935acee0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f935acee160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f935acee1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f935acee280>", "forward": "<function ActorCriticPolicy.forward at 0x7f935acee310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f935acee3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f935acee430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f935acee4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f935acee550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f935acee5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f935ace94e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673094871050690504, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZpYj61awA/RauevbDzo75YWLI9bluQvQAAAAAAAAAATYYdPT6fsD82wkA/R26ovnMftrz/YKm7AAAAAAAAAADNfHU7Tv6hP98BqLudLgS/GLiNPObrHT0AAAAAAAAAAGZkuTxSOP+56jw1uAnr37IeRTC7AmlYNwAAgD8AAIA/ZmqlO6DHiz+i8tM8ipHwvoVbcTyKllY7AAAAAAAAAADNYr887An7uRpPzjdtWtwypvf/Odbn8bYAAIA/AACAP4A1nT3Sj767wictvEZRojxahQ69C6CIPQAAgD8AAIA/mqlOvalOKD57h/48Q3d/vhqqS7xtdrs8AAAAAAAAAACNyA6+L5N4PftO1D4E8jy+BefjPN61Bz0AAAAAAAAAANr6Cb5xmSo6ZbBpt/CEFDR2toK8/NKLNgAAgD8AAIA/ZlEKPX+ewD5lDQy+hOi4vrymFDoaqSO9AAAAAAAAAAAzH6S7SfayP6urH75EeFy+yRKVufaSPL0AAAAAAAAAAACM8rwKkwK7goPMOywIjzz70Wq8E/J2PQAAgD8AAIA/ZgidPa4fxLq9CEa8sg+LPB2fMDsL1XG9AACAPwAAgD9mxgG7j1YXuoqaHrUi1qSuTE7MumKQajQAAIA/AACAP1pM1T2hIMk9t54fvgcXDr5mG768wrjUPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIppiDoKMhb0CUhpRSlIwBbJRL9IwBdJRHQJLB+8OCoTB1fZQoaAZoCWgPQwi8H7dfPkZvQJSGlFKUaBVL6mgWR0CSwnfDUExJdX2UKGgGaAloD0MI2PD0Sll0cECUhpRSlGgVS99oFkdAksKfwRXfZXV9lChoBmgJaA9DCBISaRu/oXJAlIaUUpRoFU1QAWgWR0CSxGzu4PPLdX2UKGgGaAloD0MIVmEzwAVgbkCUhpRSlGgVS91oFkdAksSVpsXSB3V9lChoBmgJaA9DCJ3y6EbYDnBAlIaUUpRoFUvsaBZHQJLFiG0u14R1fZQoaAZoCWgPQwhjuaXVkKFxQJSGlFKUaBVL/GgWR0CSxc+qioKldX2UKGgGaAloD0MIM93rpD7OckCUhpRSlGgVS/1oFkdAksYRpg1FY3V9lChoBmgJaA9DCMy209bIuXFAlIaUUpRoFU0JAWgWR0CSxmYxcmjTdX2UKGgGaAloD0MIKULqdrYlcECUhpRSlGgVTScBaBZHQJLHrtBv73x1fZQoaAZoCWgPQwiif4KLFTZyQJSGlFKUaBVNGQFoFkdAksf4Z62OQ3V9lChoBmgJaA9DCErRyr2ApXFAlIaUUpRoFUvzaBZHQJLIZy4nWrh1fZQoaAZoCWgPQwhjt88qM3ByQJSGlFKUaBVNOwFoFkdAksixmf5DZ3V9lChoBmgJaA9DCDz2s1iKPHNAlIaUUpRoFU0NAWgWR0CSyO5eJHiFdX2UKGgGaAloD0MIWOcYkP23cUCUhpRSlGgVS/doFkdAkslGo3rD63V9lChoBmgJaA9DCHvdIjDWJ1dAlIaUUpRoFU3oA2gWR0CSyWzcynDSdX2UKGgGaAloD0MIcQD9vj8bcUCUhpRSlGgVTQMBaBZHQJLKIUmD15B1fZQoaAZoCWgPQwi1N/jCZDBzQJSGlFKUaBVNfwFoFkdAksoiAYpDu3V9lChoBmgJaA9DCOp29pUHqHFAlIaUUpRoFU0QAWgWR0CSylA2ycCpdX2UKGgGaAloD0MIPpXTnpI3cECUhpRSlGgVS91oFkdAksqxy4nWrnV9lChoBmgJaA9DCAslk1N7EXNAlIaUUpRoFUvvaBZHQJLLM2xY7q91fZQoaAZoCWgPQwgzp8tiIihxQJSGlFKUaBVL3WgWR0CSy7cuanaWdX2UKGgGaAloD0MIZ2K6EKs9ckCUhpRSlGgVTQ8BaBZHQJLMu5c1O0t1fZQoaAZoCWgPQwgB+n3/pu9yQJSGlFKUaBVNEAFoFkdAks2AJb+tKnV9lChoBmgJaA9DCA+aXffWaHNAlIaUUpRoFU0iAWgWR0CSzbWJrLyMdX2UKGgGaAloD0MI3WCow0p6cUCUhpRSlGgVS8ZoFkdAks4l9jPOZHV9lChoBmgJaA9DCOdyg6EOGm5AlIaUUpRoFUv1aBZHQJLO51jiGWV1fZQoaAZoCWgPQwiiXYWUHydxQJSGlFKUaBVNGwFoFkdAks9LUTcqOXV9lChoBmgJaA9DCFRU/UrnC3JAlIaUUpRoFU0MAWgWR0CSz0r6LwWndX2UKGgGaAloD0MIOEiI8gUbcUCUhpRSlGgVTQABaBZHQJLPf7cfvF51fZQoaAZoCWgPQwi+FvTeGE5xQJSGlFKUaBVNDwFoFkdAktBmOuJUHnV9lChoBmgJaA9DCNC0xMpo7m9AlIaUUpRoFUv0aBZHQJLQpObiIcl1fZQoaAZoCWgPQwjQ8GYNnq9xQJSGlFKUaBVNYgFoFkdAktD1ZxJd0XV9lChoBmgJaA9DCPBMaJLYFHJAlIaUUpRoFUv4aBZHQJLR2J1q33J1fZQoaAZoCWgPQwj20akr31ZyQJSGlFKUaBVNFAFoFkdAktH7BsQ/YHV9lChoBmgJaA9DCMpUwaikEEJAlIaUUpRoFUvEaBZHQJLSJvVEuxt1fZQoaAZoCWgPQwhGfZI7LG1wQJSGlFKUaBVNFAFoFkdAktMnlS0jT3V9lChoBmgJaA9DCGw+rg0VwHBAlIaUUpRoFU1+AWgWR0CS1DwkxASndX2UKGgGaAloD0MIqdpugq92cUCUhpRSlGgVS+1oFkdAktTIS13MZHV9lChoBmgJaA9DCIZ2TrOATnBAlIaUUpRoFU2VAWgWR0CS1O2/SH/MdX2UKGgGaAloD0MIIJxPHes6cECUhpRSlGgVS+1oFkdAktV2N70Fr3V9lChoBmgJaA9DCGTPnsuU6HFAlIaUUpRoFU0kAWgWR0CS1atf5ULldX2UKGgGaAloD0MInkFD/4S7b0CUhpRSlGgVS/JoFkdAktX885jpcHV9lChoBmgJaA9DCHeeeM6WBG9AlIaUUpRoFUv6aBZHQJLWbL0SRKZ1fZQoaAZoCWgPQwjr/xzmS6VwQJSGlFKUaBVL4WgWR0CS1rJxvNu+dX2UKGgGaAloD0MIlIPZBFjzcUCUhpRSlGgVTVIBaBZHQJLqmt2cJ+l1fZQoaAZoCWgPQwil12Zj5WpzQJSGlFKUaBVNLAFoFkdAkusDyFwkxHV9lChoBmgJaA9DCDmdZKuLp3BAlIaUUpRoFU0KAWgWR0CS67pH7P6bdX2UKGgGaAloD0MIL/oK0sy/cECUhpRSlGgVS/VoFkdAkuwNSl3yJHV9lChoBmgJaA9DCMtlo3N+7nJAlIaUUpRoFU03AWgWR0CS7JzSThYOdX2UKGgGaAloD0MIKxVUVH2cbkCUhpRSlGgVS/doFkdAku10163RX3V9lChoBmgJaA9DCAQEc/S4xnFAlIaUUpRoFU05AWgWR0CS7kghbGFSdX2UKGgGaAloD0MIRwA3i5eTb0CUhpRSlGgVTV0BaBZHQJLvOeI2wV11fZQoaAZoCWgPQwgj9DP1utByQJSGlFKUaBVNFwFoFkdAkvAppFkQPXV9lChoBmgJaA9DCBzvjozVeG5AlIaUUpRoFU0WAWgWR0CS8EiwjdHldX2UKGgGaAloD0MIEaj+QeRocUCUhpRSlGgVTQQBaBZHQJLwihZha1V1fZQoaAZoCWgPQwhio6zfzI9vQJSGlFKUaBVL9mgWR0CS8OEcsDnvdX2UKGgGaAloD0MI2gHXFTN5cECUhpRSlGgVTQcBaBZHQJLw7b1yvLZ1fZQoaAZoCWgPQwgLYqBrX+VyQJSGlFKUaBVL9WgWR0CS8Zhb4agmdX2UKGgGaAloD0MINIY5QRthbkCUhpRSlGgVTTgBaBZHQJLx0/Vy3kR1fZQoaAZoCWgPQwgcJhqkYLluQJSGlFKUaBVNFAFoFkdAkvH/Zh8YynV9lChoBmgJaA9DCP8+48IBOW5AlIaUUpRoFUvyaBZHQJLzFtwaR6p1fZQoaAZoCWgPQwg2HmyxWyJxQJSGlFKUaBVNGwFoFkdAkvPl9Sde6nV9lChoBmgJaA9DCERq2sW0yGxAlIaUUpRoFU0nAWgWR0CS9Umx+rlvdX2UKGgGaAloD0MI0H6kiEzMckCUhpRSlGgVS/BoFkdAkvVicPOIInV9lChoBmgJaA9DCOxtMxViGnFAlIaUUpRoFU0NAWgWR0CS9XAFPi1idX2UKGgGaAloD0MIqKePwN8XcECUhpRSlGgVS9hoFkdAkvWLcKw6hnV9lChoBmgJaA9DCI3xYfaypW5AlIaUUpRoFU0WAmgWR0CS9vZM+NcXdX2UKGgGaAloD0MI1QYnol9kcUCUhpRSlGgVS/ZoFkdAkvdeAiFCcHV9lChoBmgJaA9DCF4SZ0XUEEFAlIaUUpRoFUu/aBZHQJL3giTt9hJ1fZQoaAZoCWgPQwg8hPHTuOtwQJSGlFKUaBVNFwFoFkdAkviXPAwfyXV9lChoBmgJaA9DCDfGTngJwW9AlIaUUpRoFUv3aBZHQJL4+iDdxhl1fZQoaAZoCWgPQwjrjsU2qe1vQJSGlFKUaBVL/2gWR0CS+QNKAavSdX2UKGgGaAloD0MIIqtbPadGb0CUhpRSlGgVTTMBaBZHQJL5CbZvkzZ1fZQoaAZoCWgPQwhLrIxGPidLwJSGlFKUaBVN6AFoFkdAkvkbq2SdOXV9lChoBmgJaA9DCPZ+ox23VXJAlIaUUpRoFU06AWgWR0CS+dRxLkCFdX2UKGgGaAloD0MIkpc1sQAlckCUhpRSlGgVS+xoFkdAkvqHrhR64XV9lChoBmgJaA9DCGjnNAv0uXJAlIaUUpRoFU0vAWgWR0CS+5fp2U0OdX2UKGgGaAloD0MI/IwLBwI6cECUhpRSlGgVTYoBaBZHQJL773ta6jF1fZQoaAZoCWgPQwi3eeOkMH1xQJSGlFKUaBVNAgFoFkdAkvyEXxe9jHV9lChoBmgJaA9DCAAce/ZcgkFAlIaUUpRoFUu+aBZHQJL8rQgLZzx1fZQoaAZoCWgPQwiaWyGsBrBzQJSGlFKUaBVNTQFoFkdAkv72L9/BnHV9lChoBmgJaA9DCJzFi4UhjHBAlIaUUpRoFU0lAWgWR0CS/7sYEW69dX2UKGgGaAloD0MIMGKfAIpXb0CUhpRSlGgVTUIBaBZHQJMAQ+NcW0t1fZQoaAZoCWgPQwgT1sbYyVlxQJSGlFKUaBVNAgFoFkdAkwBkh7mdRXV9lChoBmgJaA9DCEEtBg/TYm9AlIaUUpRoFUv+aBZHQJMAbS0BwMp1fZQoaAZoCWgPQwgTtTS3AiZyQJSGlFKUaBVNEAFoFkdAkwBtO2y9mHV9lChoBmgJaA9DCMdim1Q0mW5AlIaUUpRoFU0SAWgWR0CTANjaPCEYdX2UKGgGaAloD0MIVfoJZzd7cECUhpRSlGgVTZoBaBZHQJMBC6WgOBl1fZQoaAZoCWgPQwg4nzpW6U5zQJSGlFKUaBVNmAFoFkdAkwEdDUmUn3V9lChoBmgJaA9DCIV3uYgv4nBAlIaUUpRoFU0LAWgWR0CTAjeIVM24dX2UKGgGaAloD0MI2GK3zyoxcECUhpRSlGgVS/toFkdAkwLToMa0hXV9lChoBmgJaA9DCMyWrIrwUHJAlIaUUpRoFU09AWgWR0CTAtHoHLRsdX2UKGgGaAloD0MIv5zZrlAwcECUhpRSlGgVS/JoFkdAkwLoXwb2lHV9lChoBmgJaA9DCMJOsWpQh3BAlIaUUpRoFUv7aBZHQJMDyXjU/fR1fZQoaAZoCWgPQwgPXru04Z9uQJSGlFKUaBVNCgFoFkdAkwQF6NVBEHV9lChoBmgJaA9DCIl8l1IXuXBAlIaUUpRoFU3cAWgWR0CTBi2bG3nZdX2UKGgGaAloD0MIdEUpIRgIcECUhpRSlGgVTQMBaBZHQJMGyScLBsR1fZQoaAZoCWgPQwizzY3pSRNyQJSGlFKUaBVL52gWR0CTBxDvmYBvdX2UKGgGaAloD0MICty6m6d6T0CUhpRSlGgVS7FoFkdAkwcf3JxNqXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e07acca54fc2f63bdcc1d776dbbd330956850d2374f7842c6803cf2482064044
3
+ size 147166
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f935acee040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f935acee0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f935acee160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f935acee1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f935acee280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f935acee310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f935acee3a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f935acee430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f935acee4c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f935acee550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f935acee5e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f935ace94e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673094871050690504,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZpYj61awA/RauevbDzo75YWLI9bluQvQAAAAAAAAAATYYdPT6fsD82wkA/R26ovnMftrz/YKm7AAAAAAAAAADNfHU7Tv6hP98BqLudLgS/GLiNPObrHT0AAAAAAAAAAGZkuTxSOP+56jw1uAnr37IeRTC7AmlYNwAAgD8AAIA/ZmqlO6DHiz+i8tM8ipHwvoVbcTyKllY7AAAAAAAAAADNYr887An7uRpPzjdtWtwypvf/Odbn8bYAAIA/AACAP4A1nT3Sj767wictvEZRojxahQ69C6CIPQAAgD8AAIA/mqlOvalOKD57h/48Q3d/vhqqS7xtdrs8AAAAAAAAAACNyA6+L5N4PftO1D4E8jy+BefjPN61Bz0AAAAAAAAAANr6Cb5xmSo6ZbBpt/CEFDR2toK8/NKLNgAAgD8AAIA/ZlEKPX+ewD5lDQy+hOi4vrymFDoaqSO9AAAAAAAAAAAzH6S7SfayP6urH75EeFy+yRKVufaSPL0AAAAAAAAAAACM8rwKkwK7goPMOywIjzz70Wq8E/J2PQAAgD8AAIA/ZgidPa4fxLq9CEa8sg+LPB2fMDsL1XG9AACAPwAAgD9mxgG7j1YXuoqaHrUi1qSuTE7MumKQajQAAIA/AACAP1pM1T2hIMk9t54fvgcXDr5mG768wrjUPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIppiDoKMhb0CUhpRSlIwBbJRL9IwBdJRHQJLB+8OCoTB1fZQoaAZoCWgPQwi8H7dfPkZvQJSGlFKUaBVL6mgWR0CSwnfDUExJdX2UKGgGaAloD0MI2PD0Sll0cECUhpRSlGgVS99oFkdAksKfwRXfZXV9lChoBmgJaA9DCBISaRu/oXJAlIaUUpRoFU1QAWgWR0CSxGzu4PPLdX2UKGgGaAloD0MIVmEzwAVgbkCUhpRSlGgVS91oFkdAksSVpsXSB3V9lChoBmgJaA9DCJ3y6EbYDnBAlIaUUpRoFUvsaBZHQJLFiG0u14R1fZQoaAZoCWgPQwhjuaXVkKFxQJSGlFKUaBVL/GgWR0CSxc+qioKldX2UKGgGaAloD0MIM93rpD7OckCUhpRSlGgVS/1oFkdAksYRpg1FY3V9lChoBmgJaA9DCMy209bIuXFAlIaUUpRoFU0JAWgWR0CSxmYxcmjTdX2UKGgGaAloD0MIKULqdrYlcECUhpRSlGgVTScBaBZHQJLHrtBv73x1fZQoaAZoCWgPQwiif4KLFTZyQJSGlFKUaBVNGQFoFkdAksf4Z62OQ3V9lChoBmgJaA9DCErRyr2ApXFAlIaUUpRoFUvzaBZHQJLIZy4nWrh1fZQoaAZoCWgPQwhjt88qM3ByQJSGlFKUaBVNOwFoFkdAksixmf5DZ3V9lChoBmgJaA9DCDz2s1iKPHNAlIaUUpRoFU0NAWgWR0CSyO5eJHiFdX2UKGgGaAloD0MIWOcYkP23cUCUhpRSlGgVS/doFkdAkslGo3rD63V9lChoBmgJaA9DCHvdIjDWJ1dAlIaUUpRoFU3oA2gWR0CSyWzcynDSdX2UKGgGaAloD0MIcQD9vj8bcUCUhpRSlGgVTQMBaBZHQJLKIUmD15B1fZQoaAZoCWgPQwi1N/jCZDBzQJSGlFKUaBVNfwFoFkdAksoiAYpDu3V9lChoBmgJaA9DCOp29pUHqHFAlIaUUpRoFU0QAWgWR0CSylA2ycCpdX2UKGgGaAloD0MIPpXTnpI3cECUhpRSlGgVS91oFkdAksqxy4nWrnV9lChoBmgJaA9DCAslk1N7EXNAlIaUUpRoFUvvaBZHQJLLM2xY7q91fZQoaAZoCWgPQwgzp8tiIihxQJSGlFKUaBVL3WgWR0CSy7cuanaWdX2UKGgGaAloD0MIZ2K6EKs9ckCUhpRSlGgVTQ8BaBZHQJLMu5c1O0t1fZQoaAZoCWgPQwgB+n3/pu9yQJSGlFKUaBVNEAFoFkdAks2AJb+tKnV9lChoBmgJaA9DCA+aXffWaHNAlIaUUpRoFU0iAWgWR0CSzbWJrLyMdX2UKGgGaAloD0MI3WCow0p6cUCUhpRSlGgVS8ZoFkdAks4l9jPOZHV9lChoBmgJaA9DCOdyg6EOGm5AlIaUUpRoFUv1aBZHQJLO51jiGWV1fZQoaAZoCWgPQwiiXYWUHydxQJSGlFKUaBVNGwFoFkdAks9LUTcqOXV9lChoBmgJaA9DCFRU/UrnC3JAlIaUUpRoFU0MAWgWR0CSz0r6LwWndX2UKGgGaAloD0MIOEiI8gUbcUCUhpRSlGgVTQABaBZHQJLPf7cfvF51fZQoaAZoCWgPQwi+FvTeGE5xQJSGlFKUaBVNDwFoFkdAktBmOuJUHnV9lChoBmgJaA9DCNC0xMpo7m9AlIaUUpRoFUv0aBZHQJLQpObiIcl1fZQoaAZoCWgPQwjQ8GYNnq9xQJSGlFKUaBVNYgFoFkdAktD1ZxJd0XV9lChoBmgJaA9DCPBMaJLYFHJAlIaUUpRoFUv4aBZHQJLR2J1q33J1fZQoaAZoCWgPQwj20akr31ZyQJSGlFKUaBVNFAFoFkdAktH7BsQ/YHV9lChoBmgJaA9DCMpUwaikEEJAlIaUUpRoFUvEaBZHQJLSJvVEuxt1fZQoaAZoCWgPQwhGfZI7LG1wQJSGlFKUaBVNFAFoFkdAktMnlS0jT3V9lChoBmgJaA9DCGw+rg0VwHBAlIaUUpRoFU1+AWgWR0CS1DwkxASndX2UKGgGaAloD0MIqdpugq92cUCUhpRSlGgVS+1oFkdAktTIS13MZHV9lChoBmgJaA9DCIZ2TrOATnBAlIaUUpRoFU2VAWgWR0CS1O2/SH/MdX2UKGgGaAloD0MIIJxPHes6cECUhpRSlGgVS+1oFkdAktV2N70Fr3V9lChoBmgJaA9DCGTPnsuU6HFAlIaUUpRoFU0kAWgWR0CS1atf5ULldX2UKGgGaAloD0MInkFD/4S7b0CUhpRSlGgVS/JoFkdAktX885jpcHV9lChoBmgJaA9DCHeeeM6WBG9AlIaUUpRoFUv6aBZHQJLWbL0SRKZ1fZQoaAZoCWgPQwjr/xzmS6VwQJSGlFKUaBVL4WgWR0CS1rJxvNu+dX2UKGgGaAloD0MIlIPZBFjzcUCUhpRSlGgVTVIBaBZHQJLqmt2cJ+l1fZQoaAZoCWgPQwil12Zj5WpzQJSGlFKUaBVNLAFoFkdAkusDyFwkxHV9lChoBmgJaA9DCDmdZKuLp3BAlIaUUpRoFU0KAWgWR0CS67pH7P6bdX2UKGgGaAloD0MIL/oK0sy/cECUhpRSlGgVS/VoFkdAkuwNSl3yJHV9lChoBmgJaA9DCMtlo3N+7nJAlIaUUpRoFU03AWgWR0CS7JzSThYOdX2UKGgGaAloD0MIKxVUVH2cbkCUhpRSlGgVS/doFkdAku10163RX3V9lChoBmgJaA9DCAQEc/S4xnFAlIaUUpRoFU05AWgWR0CS7kghbGFSdX2UKGgGaAloD0MIRwA3i5eTb0CUhpRSlGgVTV0BaBZHQJLvOeI2wV11fZQoaAZoCWgPQwgj9DP1utByQJSGlFKUaBVNFwFoFkdAkvAppFkQPXV9lChoBmgJaA9DCBzvjozVeG5AlIaUUpRoFU0WAWgWR0CS8EiwjdHldX2UKGgGaAloD0MIEaj+QeRocUCUhpRSlGgVTQQBaBZHQJLwihZha1V1fZQoaAZoCWgPQwhio6zfzI9vQJSGlFKUaBVL9mgWR0CS8OEcsDnvdX2UKGgGaAloD0MI2gHXFTN5cECUhpRSlGgVTQcBaBZHQJLw7b1yvLZ1fZQoaAZoCWgPQwgLYqBrX+VyQJSGlFKUaBVL9WgWR0CS8Zhb4agmdX2UKGgGaAloD0MINIY5QRthbkCUhpRSlGgVTTgBaBZHQJLx0/Vy3kR1fZQoaAZoCWgPQwgcJhqkYLluQJSGlFKUaBVNFAFoFkdAkvH/Zh8YynV9lChoBmgJaA9DCP8+48IBOW5AlIaUUpRoFUvyaBZHQJLzFtwaR6p1fZQoaAZoCWgPQwg2HmyxWyJxQJSGlFKUaBVNGwFoFkdAkvPl9Sde6nV9lChoBmgJaA9DCERq2sW0yGxAlIaUUpRoFU0nAWgWR0CS9Umx+rlvdX2UKGgGaAloD0MI0H6kiEzMckCUhpRSlGgVS/BoFkdAkvVicPOIInV9lChoBmgJaA9DCOxtMxViGnFAlIaUUpRoFU0NAWgWR0CS9XAFPi1idX2UKGgGaAloD0MIqKePwN8XcECUhpRSlGgVS9hoFkdAkvWLcKw6hnV9lChoBmgJaA9DCI3xYfaypW5AlIaUUpRoFU0WAmgWR0CS9vZM+NcXdX2UKGgGaAloD0MI1QYnol9kcUCUhpRSlGgVS/ZoFkdAkvdeAiFCcHV9lChoBmgJaA9DCF4SZ0XUEEFAlIaUUpRoFUu/aBZHQJL3giTt9hJ1fZQoaAZoCWgPQwg8hPHTuOtwQJSGlFKUaBVNFwFoFkdAkviXPAwfyXV9lChoBmgJaA9DCDfGTngJwW9AlIaUUpRoFUv3aBZHQJL4+iDdxhl1fZQoaAZoCWgPQwjrjsU2qe1vQJSGlFKUaBVL/2gWR0CS+QNKAavSdX2UKGgGaAloD0MIIqtbPadGb0CUhpRSlGgVTTMBaBZHQJL5CbZvkzZ1fZQoaAZoCWgPQwhLrIxGPidLwJSGlFKUaBVN6AFoFkdAkvkbq2SdOXV9lChoBmgJaA9DCPZ+ox23VXJAlIaUUpRoFU06AWgWR0CS+dRxLkCFdX2UKGgGaAloD0MIkpc1sQAlckCUhpRSlGgVS+xoFkdAkvqHrhR64XV9lChoBmgJaA9DCGjnNAv0uXJAlIaUUpRoFU0vAWgWR0CS+5fp2U0OdX2UKGgGaAloD0MI/IwLBwI6cECUhpRSlGgVTYoBaBZHQJL773ta6jF1fZQoaAZoCWgPQwi3eeOkMH1xQJSGlFKUaBVNAgFoFkdAkvyEXxe9jHV9lChoBmgJaA9DCAAce/ZcgkFAlIaUUpRoFUu+aBZHQJL8rQgLZzx1fZQoaAZoCWgPQwiaWyGsBrBzQJSGlFKUaBVNTQFoFkdAkv72L9/BnHV9lChoBmgJaA9DCJzFi4UhjHBAlIaUUpRoFU0lAWgWR0CS/7sYEW69dX2UKGgGaAloD0MIMGKfAIpXb0CUhpRSlGgVTUIBaBZHQJMAQ+NcW0t1fZQoaAZoCWgPQwgT1sbYyVlxQJSGlFKUaBVNAgFoFkdAkwBkh7mdRXV9lChoBmgJaA9DCEEtBg/TYm9AlIaUUpRoFUv+aBZHQJMAbS0BwMp1fZQoaAZoCWgPQwgTtTS3AiZyQJSGlFKUaBVNEAFoFkdAkwBtO2y9mHV9lChoBmgJaA9DCMdim1Q0mW5AlIaUUpRoFU0SAWgWR0CTANjaPCEYdX2UKGgGaAloD0MIVfoJZzd7cECUhpRSlGgVTZoBaBZHQJMBC6WgOBl1fZQoaAZoCWgPQwg4nzpW6U5zQJSGlFKUaBVNmAFoFkdAkwEdDUmUn3V9lChoBmgJaA9DCIV3uYgv4nBAlIaUUpRoFU0LAWgWR0CTAjeIVM24dX2UKGgGaAloD0MI2GK3zyoxcECUhpRSlGgVS/toFkdAkwLToMa0hXV9lChoBmgJaA9DCMyWrIrwUHJAlIaUUpRoFU09AWgWR0CTAtHoHLRsdX2UKGgGaAloD0MIv5zZrlAwcECUhpRSlGgVS/JoFkdAkwLoXwb2lHV9lChoBmgJaA9DCMJOsWpQh3BAlIaUUpRoFUv7aBZHQJMDyXjU/fR1fZQoaAZoCWgPQwgPXru04Z9uQJSGlFKUaBVNCgFoFkdAkwQF6NVBEHV9lChoBmgJaA9DCIl8l1IXuXBAlIaUUpRoFU3cAWgWR0CTBi2bG3nZdX2UKGgGaAloD0MIdEUpIRgIcECUhpRSlGgVTQMBaBZHQJMGyScLBsR1fZQoaAZoCWgPQwizzY3pSRNyQJSGlFKUaBVL52gWR0CTBxDvmYBvdX2UKGgGaAloD0MICty6m6d6T0CUhpRSlGgVS7FoFkdAkwcf3JxNqXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a79a6ca32587ebfe8b13aecf64b9f6ddb0b437f7b417e1696cc71670d190ac2
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:646880712f4ae14f6794a4dd5473defe6f2b35462b00ddcae09502910884afe5
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (238 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 271.1964156696513, "std_reward": 19.441073342348368, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T13:16:01.967022"}