File size: 2,224 Bytes
81f7c74 1a88145 81f7c74 1a88145 81f7c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: zlm_b32_le4_s8000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zlm_b32_le4_s8000
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3262
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5552 | 0.2094 | 500 | 0.4883 |
| 0.4913 | 0.4188 | 1000 | 0.4266 |
| 0.446 | 0.6283 | 1500 | 0.3975 |
| 0.4222 | 0.8377 | 2000 | 0.3949 |
| 0.4273 | 1.0471 | 2500 | 0.3829 |
| 0.4028 | 1.2565 | 3000 | 0.3674 |
| 0.3941 | 1.4660 | 3500 | 0.3616 |
| 0.3871 | 1.6754 | 4000 | 0.3519 |
| 0.3828 | 1.8848 | 4500 | 0.3493 |
| 0.3954 | 2.0942 | 5000 | 0.3490 |
| 0.381 | 2.3037 | 5500 | 0.3398 |
| 0.372 | 2.5131 | 6000 | 0.3372 |
| 0.3642 | 2.7225 | 6500 | 0.3314 |
| 0.3692 | 2.9319 | 7000 | 0.3308 |
| 0.3555 | 3.1414 | 7500 | 0.3283 |
| 0.3536 | 3.3508 | 8000 | 0.3262 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|