File size: 1,808 Bytes
ea5a5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: zlm_b64_le4_s4000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zlm_b64_le4_s4000

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4089        | 0.4188 | 500  | 0.3876          |
| 0.4046        | 0.8377 | 1000 | 0.3756          |
| 0.4013        | 1.2565 | 1500 | 0.3666          |
| 0.396         | 1.6754 | 2000 | 0.3648          |
| 0.3829        | 2.0942 | 2500 | 0.3528          |
| 0.3786        | 2.5131 | 3000 | 0.3410          |
| 0.3663        | 2.9319 | 3500 | 0.3374          |
| 0.359         | 3.3508 | 4000 | 0.3333          |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1