File size: 852 Bytes
bb98109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f17d028
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
license: mit
language:
- ru
metrics:
- f1
- roc_auc
- precision
- recall
pipeline_tag: text-classification
tags:
- sentiment-analysis
- multi-class-classification
- sentiment analysis
- rubert
- sentiment
- bert
- tiny
- russian
- multiclass
- classification
datasets:
- sismetanin/rureviews
- RuSentiment
- LinisCrowd2015
- LinisCrowd2016
- KaggleRussianNews
---

The task is a __multi-class classification__ with the following labels:

```yaml
0: neutral
1: positive
2: negative
```

Label to Russian label:

```yaml
neutral: нейтральный
positive: позитивный
negative: негативный
```

## Usage

```python
from transformers import pipeline
model = pipeline(model="seara/rubert-tiny2-russian-sentiment")
model("Привет, ты мне нравишься!")
# [{'label': 'positive', 'score': 0.9398769736289978}]
```