File size: 5,239 Bytes
2c91676 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from dataclasses import dataclass, field
from typing import Optional
import torch
from transformers import AutoTokenizer, HfArgumentParser, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer
@dataclass
class ScriptArguments:
"""
These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train.
"""
per_device_train_batch_size: Optional[int] = field(default=4)
per_device_eval_batch_size: Optional[int] = field(default=1)
gradient_accumulation_steps: Optional[int] = field(default=4)
learning_rate: Optional[float] = field(default=2e-4)
max_grad_norm: Optional[float] = field(default=0.3)
weight_decay: Optional[int] = field(default=0.001)
lora_alpha: Optional[int] = field(default=16)
lora_dropout: Optional[float] = field(default=0.1)
lora_r: Optional[int] = field(default=8)
max_seq_length: Optional[int] = field(default=2048)
model_name: Optional[str] = field(
default=None,
metadata={
"help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc."
}
)
dataset_name: Optional[str] = field(
default="stingning/ultrachat",
metadata={"help": "The preference dataset to use."},
)
fp16: Optional[bool] = field(
default=False,
metadata={"help": "Enables fp16 training."},
)
bf16: Optional[bool] = field(
default=False,
metadata={"help": "Enables bf16 training."},
)
packing: Optional[bool] = field(
default=True,
metadata={"help": "Use packing dataset creating."},
)
gradient_checkpointing: Optional[bool] = field(
default=True,
metadata={"help": "Enables gradient checkpointing."},
)
use_flash_attention_2: Optional[bool] = field(
default=False,
metadata={"help": "Enables Flash Attention 2."},
)
optim: Optional[str] = field(
default="paged_adamw_32bit",
metadata={"help": "The optimizer to use."},
)
lr_scheduler_type: str = field(
default="constant",
metadata={"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"},
)
max_steps: int = field(default=1000, metadata={"help": "How many optimizer update steps to take"})
warmup_ratio: float = field(default=0.03, metadata={"help": "Fraction of steps to do a warmup for"})
save_steps: int = field(default=10, metadata={"help": "Save checkpoint every X updates steps."})
logging_steps: int = field(default=10, metadata={"help": "Log every X updates steps."})
output_dir: str = field(
default="./results",
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
def formatting_func(example):
text = f"### USER: {example['data'][0]}\n### ASSISTANT: {example['data'][1]}"
return text
# Load the GG model - this is the local one, update it to the one on the Hub
model_id = "google/gemma-7b"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4"
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=quantization_config,
torch_dtype=torch.float32,
attn_implementation="sdpa" if not script_args.use_flash_attention_2 else "flash_attention_2"
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
lora_config = LoraConfig(
r=script_args.lora_r,
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
bias="none",
task_type="CAUSAL_LM",
lora_alpha=script_args.lora_alpha,
lora_dropout=script_args.lora_dropout
)
train_dataset = load_dataset(script_args.dataset_name, split="train[:5%]")
# TODO: make that configurable
YOUR_HF_USERNAME = xxx
output_dir = f"{YOUR_HF_USERNAME}/gemma-qlora-ultrachat"
training_arguments = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=script_args.per_device_train_batch_size,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
optim=script_args.optim,
save_steps=script_args.save_steps,
logging_steps=script_args.logging_steps,
learning_rate=script_args.learning_rate,
max_grad_norm=script_args.max_grad_norm,
max_steps=script_args.max_steps,
warmup_ratio=script_args.warmup_ratio,
lr_scheduler_type=script_args.lr_scheduler_type,
gradient_checkpointing=script_args.gradient_checkpointing,
fp16=script_args.fp16,
bf16=script_args.bf16,
)
trainer = SFTTrainer(
model=model,
args=training_arguments,
train_dataset=train_dataset,
peft_config=lora_config,
packing=script_args.packing,
dataset_text_field="id",
tokenizer=tokenizer,
max_seq_length=script_args.max_seq_length,
formatting_func=formatting_func,
)
trainer.train() |