File size: 13,725 Bytes
a807da3
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d3756f741f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d3756f74280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d3756f74310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d3756f743a0>", "_build": "<function ActorCriticPolicy._build at 0x7d3756f74430>", "forward": "<function ActorCriticPolicy.forward at 0x7d3756f744c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d3756f74550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d3756f745e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d3756f74670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d3756f74700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d3756f74790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d3756f74820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d3756f70ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711466961485821664, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADQ1bt4AqY8J8osuwLDFb55pju9YqFbPAAAAAAAAAAAzRyUvFy9lz4HLCk9VQ+Wvk3zeT0jhIy9AAAAAAAAAAAaYWO94RiNuhqs+7pcSbi2FfIHOkoBEToAAAAAAACAP2ZfBr0EbPo9ehR9PvEJXb4bD5U93pYGPQAAAAAAAAAAGkrNPQswhz9O6I8+lXgOv3JtaT42N0Q+AAAAAAAAAADAYKI9lMG9Prr9Qj0mibG+Xht4PXCW6jwAAAAAAAAAABpPwb2Ptk26UulgPCkjfDrkPQA6K/FZOwAAgD8AAAAA5uW1vTij/DyD+gM/6o86vju9Iz6DCF4+AAAAAAAAAADAX9w9HGcCPR4Phr6QCFW+BRjcvRC1cj0AAAAAAAAAALNQK73D5T26n/UutGYM0y5qIyu7WUieMwAAgD8AAIA/E/kFvoB94j4smDO6DW6NvjlxXb21ldc8AAAAAAAAAABAv/490VaWP66j0D4xQAm/rO5GPlWAAD4AAAAAAAAAABrs3b2+U6s9gNZwPgPMJ77vIFQ9SgnEPAAAAAAAAAAA7duivmG53T6d4iY9g125vlzXJr6xnac8AAAAAAAAAABmjl+7E022P1uTa72MWgM9wq1+O4UCUzwAAAAAAAAAACqJoz47Cyc/DeFgPPKfA79HW2I+SjaVvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE312+PBBRiMAWyUS7iMAXSUR0COb/GcWj46dX2UKGgGR0BOZlJ6IFeOaAdLv2gIR0COcgu2Zy+6dX2UKGgGR0BwM3iaRZEEaAdLwGgIR0COc1EuQIUrdX2UKGgGR0Bt26u8scyWaAdNBQFoCEdAjnUIYFaB7XV9lChoBkdAcvtqnWJ79mgHTQ4BaAhHQI51HObAk9l1fZQoaAZHQHLm/vBrN4ZoB00zAWgIR0COdVeuV5bAdX2UKGgGR0BxOp3OfNA1aAdNGgFoCEdAjnV1B2OhkHV9lChoBkdAcW06DoQnQmgHS91oCEdAjnapEhJRO3V9lChoBkdAcZzsGgSOBGgHTR8BaAhHQI521MTN+sp1fZQoaAZHQHAcoqTbFjxoB0vpaAhHQI53Pwb2lEZ1fZQoaAZHQHD74fSx7iRoB0v8aAhHQI55xvkzXSV1fZQoaAZHQHGP82rGR3hoB0vzaAhHQI57aYE4ecR1fZQoaAZHQG4Jsw+MZP5oB0vjaAhHQI58H6Eal1t1fZQoaAZHQG9knf/FR51oB0v5aAhHQI582Aqd6LR1fZQoaAZHQHIQaU3XI2hoB0vaaAhHQI5/DFId2gZ1fZQoaAZHQHCFdX1anrJoB01BAWgIR0COfyjSofjkdX2UKGgGR0ByRQONHYpVaAdN3QJoCEdAjn+atcObzHV9lChoBkdAcG0zUqhDgWgHTQkBaAhHQI6AhamoBJZ1fZQoaAZHQHI6yaqjrRloB0vLaAhHQI6CV/6O5rh1fZQoaAZHQG8OBcAzYVZoB0vbaAhHQI6CkQmNR3x1fZQoaAZHQHFTPexfOUtoB0v+aAhHQI6DOZ5Rjz91fZQoaAZHQHI9T3qRlpZoB00OAWgIR0COg7meUY8/dX2UKGgGR0BySoT8HfMwaAdL8WgIR0COg/ns9jgAdX2UKGgGR0By4JzGPxQSaAdNKgFoCEdAjoUA7xNIsnV9lChoBkdAcjuAZbY9PmgHTSwBaAhHQI6FVQEZBLR1fZQoaAZHQFD+KeTV2A5oB0vZaAhHQI6HCDGtITZ1fZQoaAZHQHLVY8p1A7hoB00BAWgIR0COh4pQ1rIpdX2UKGgGR0BxppyU9pyqaAdL62gIR0COiSogmqo7dX2UKGgGR0ByiUfhddE9aAdNFwFoCEdAjorSbpeNUHV9lChoBkdAcf6qUNayKWgHS+9oCEdAjowlPBSDRXV9lChoBkdAc1AzzmOlwmgHS/toCEdAjoxJPhybQXV9lChoBkdAcw48+iaiK2gHS/BoCEdAjo0hltj0+XV9lChoBkdAcCDhWYF7lmgHTRQBaAhHQI6N0ZgogFJ1fZQoaAZHQHGdSDIzWPNoB0vHaAhHQI6OSLGaQV91fZQoaAZHQG1sRq46Oo5oB0vpaAhHQI6Oi+pOvdN1fZQoaAZHQFA9XAM2FWZoB0vIaAhHQI6Pfio86mx1fZQoaAZHQHOCTdpItlJoB00KAWgIR0COkbvegte2dX2UKGgGR0BtwQMWoFV1aAdNGgFoCEdAjpIWV3Ux23V9lChoBkdAcEAsUIsyz2gHTQ4BaAhHQI6Utn003wV1fZQoaAZHQHE2d78ejmFoB00pAWgIR0COv1scABDHdX2UKGgGR0BxVWAMDwH8aAdL/mgIR0COwYFeOXE7dX2UKGgGR0By2oyj59E1aAdL3GgIR0COwd7655JLdX2UKGgGR0Bf604rBj4IaAdN6ANoCEdAjsJEL6UJOXV9lChoBkdAcfHTtsvZiGgHTSoBaAhHQI7Cdz0Yj0N1fZQoaAZHQHGcflZHNHJoB00SAWgIR0COxHoVVPvbdX2UKGgGR0Bx141yeZogaAdL6mgIR0COxHtjTa0ydX2UKGgGR0ByfW14Pf8/aAdL/2gIR0COxQNtqHoHdX2UKGgGR0BxVrgHeJpGaAdNIgFoCEdAjsVgfuCwr3V9lChoBkdAcPGbQC0WuWgHTQsBaAhHQI7GPM8ox591fZQoaAZHQHBpH8CPp6hoB02JAWgIR0COxmqyWzF/dX2UKGgGR0BQBVFtsN2DaAdLtmgIR0COxwBltj0+dX2UKGgGR0BxfMHKOktVaAdL2WgIR0COxyinHeabdX2UKGgGR0Bwp7mU4aP0aAdNDAFoCEdAjslf/echDHV9lChoBkdAbQWuJ1q33GgHTT8CaAhHQI7KbXlKbrl1fZQoaAZHQHK6tY8uBc1oB01OAWgIR0COyr2yLQ5WdX2UKGgGR0BxtB3FDOTraAdL52gIR0COzId/axoqdX2UKGgGR0BxIWjmCAc1aAdL/GgIR0COz24VARkFdX2UKGgGR0BxOz80k4WDaAdL2GgIR0CO0MTOgQHzdX2UKGgGR0BtjIUeuFHsaAdL5GgIR0CO0SKbayrxdX2UKGgGR0BxaLiKiwjdaAdL3GgIR0CO0dlrdnCgdX2UKGgGR0BwpATL4etCaAdL/WgIR0CO0h8fms/6dX2UKGgGR0BwdMKhL5ARaAdL32gIR0CO0w3OObRXdX2UKGgGR0BwfR8KG+K1aAdNEwFoCEdAjtNmz0HyE3V9lChoBkdAcdYsFdLQHGgHTTQBaAhHQI7TW8mKIi11fZQoaAZHQHJj3C0ngHhoB003AWgIR0CO06piI+GHdX2UKGgGR0ByyC04R28qaAdNEQFoCEdAjth2bwz+FXV9lChoBkdAQnwWBSUC72gHS55oCEdAjtiR5kbxVnV9lChoBkdAcSZqQzUI9mgHTQQBaAhHQI7Y6T6i0v51fZQoaAZHQHAyOGwiaApoB01bAWgIR0CO2UweNkvsdX2UKGgGR0BwCBf3N9piaAdNFQFoCEdAjto57gKnenV9lChoBkdAciyPS2H+ImgHTWcBaAhHQI7amKAJ9iN1fZQoaAZHQHHnMDB/I81oB03eAWgIR0CO3LzmOlwcdX2UKGgGR0BxTdh+fAbiaAdL9GgIR0CO3tPSlWOqdX2UKGgGR0BxJRQyhzvJaAdL4mgIR0CO3t0U47zTdX2UKGgGR0Bv+luR9w3paAdL4WgIR0CO3xJI1+AmdX2UKGgGR0Bwz4UTL4etaAdNSAFoCEdAjt9cZ9/jKnV9lChoBkdAcVGnfEXLvGgHTRMBaAhHQI7gs6JZW7x1fZQoaAZHQHCEAhGH58BoB00BAWgIR0CO4cTt9hJAdX2UKGgGR0A/R6OHWSU1aAdLpWgIR0CO4lI3BHkMdX2UKGgGR0Bx5l0IToMbaAdNFQFoCEdAjuJ6kqMFU3V9lChoBkdAcSyfxMFlkGgHTRwBaAhHQI7jVxIatLd1fZQoaAZHQHIShdpqREFoB002AWgIR0CO5F0IToMbdX2UKGgGR0ByDW7f51vEaAdL62gIR0CO5ZcQAdXDdX2UKGgGR0BzX+VHFxXGaAdNBwFoCEdAjuap2dNFjXV9lChoBkdAcAN0pEx7A2gHTQoBaAhHQI7m7Ccf/3p1fZQoaAZHQHFmzRplBhRoB0vWaAhHQI7n/Khcqvx1fZQoaAZHQHFeMANoak1oB00IAWgIR0CO6FNRFZxJdX2UKGgGR0BvI2lbeMyaaAdL82gIR0CO6+tXgccVdX2UKGgGR0BwvngEU0vXaAdL/WgIR0CO6/qLS/j9dX2UKGgGR0ByQXWBjFyaaAdL42gIR0CO7JGI9C/odX2UKGgGR0By/XYK6WgOaAdNCwFoCEdAjuy7FCLMtHV9lChoBkdAcThZ9uxbCGgHS9xoCEdAju1ZQ53kgnV9lChoBkdAbjw1XvH932gHS/BoCEdAju9UOuq3mXV9lChoBkdAcE/pt78ejmgHTTcBaAhHQI7ve/WUbDN1fZQoaAZHQHE5L0WdmQNoB00EAWgIR0CO8ELxZuAJdX2UKGgGR0BxExDhLoOhaAdL+2gIR0CO8OOQQtjDdX2UKGgGR0BxwW6lLvkSaAdL9mgIR0CO8a+V1Oj7dX2UKGgGR0Bx42g5BC2MaAdL9WgIR0CO9ZgBLf1pdX2UKGgGR0BsMjyauwHJaAdN2wFoCEdAjvWuPeYUnHV9lChoBkdAb5XD6WPcSGgHTQ8BaAhHQI73Qs3AEdN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}