|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- amazon_reviews_multi |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
base_model: distilbert-base-uncased |
|
model-index: |
|
- name: distilbert-base-uncased-finetuned-amazon-review |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: amazon_reviews_multi |
|
type: amazon_reviews_multi |
|
args: es |
|
metrics: |
|
- type: accuracy |
|
value: 0.693 |
|
name: Accuracy |
|
- type: f1 |
|
value: 0.7002653469272611 |
|
name: F1 |
|
- type: precision |
|
value: 0.709541681233075 |
|
name: Precision |
|
- type: recall |
|
value: 0.693 |
|
name: Recall |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased-finetuned-amazon-review |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_reviews_multi dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3494 |
|
- Accuracy: 0.693 |
|
- F1: 0.7003 |
|
- Precision: 0.7095 |
|
- Recall: 0.693 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 0.5 | 500 | 0.8287 | 0.7104 | 0.7120 | 0.7152 | 0.7104 | |
|
| 0.4238 | 1.0 | 1000 | 0.8917 | 0.7094 | 0.6989 | 0.6917 | 0.7094 | |
|
| 0.4238 | 1.5 | 1500 | 0.9367 | 0.6884 | 0.6983 | 0.7151 | 0.6884 | |
|
| 0.3152 | 2.0 | 2000 | 0.9845 | 0.7116 | 0.7144 | 0.7176 | 0.7116 | |
|
| 0.3152 | 2.5 | 2500 | 1.0752 | 0.6814 | 0.6968 | 0.7232 | 0.6814 | |
|
| 0.2454 | 3.0 | 3000 | 1.1215 | 0.6918 | 0.6954 | 0.7068 | 0.6918 | |
|
| 0.2454 | 3.5 | 3500 | 1.2905 | 0.6976 | 0.7048 | 0.7138 | 0.6976 | |
|
| 0.1989 | 4.0 | 4000 | 1.2938 | 0.694 | 0.7016 | 0.7113 | 0.694 | |
|
| 0.1989 | 4.5 | 4500 | 1.3623 | 0.6972 | 0.7014 | 0.7062 | 0.6972 | |
|
| 0.1746 | 5.0 | 5000 | 1.3494 | 0.693 | 0.7003 | 0.7095 | 0.693 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.15.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.17.0 |
|
- Tokenizers 0.10.3 |
|
|