--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 - precision - recall base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-amazon-review results: - task: type: text-classification name: Text Classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - type: accuracy value: 0.693 name: Accuracy - type: f1 value: 0.7002653469272611 name: F1 - type: precision value: 0.709541681233075 name: Precision - type: recall value: 0.693 name: Recall --- # distilbert-base-uncased-finetuned-amazon-review This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.3494 - Accuracy: 0.693 - F1: 0.7003 - Precision: 0.7095 - Recall: 0.693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 0.5 | 500 | 0.8287 | 0.7104 | 0.7120 | 0.7152 | 0.7104 | | 0.4238 | 1.0 | 1000 | 0.8917 | 0.7094 | 0.6989 | 0.6917 | 0.7094 | | 0.4238 | 1.5 | 1500 | 0.9367 | 0.6884 | 0.6983 | 0.7151 | 0.6884 | | 0.3152 | 2.0 | 2000 | 0.9845 | 0.7116 | 0.7144 | 0.7176 | 0.7116 | | 0.3152 | 2.5 | 2500 | 1.0752 | 0.6814 | 0.6968 | 0.7232 | 0.6814 | | 0.2454 | 3.0 | 3000 | 1.1215 | 0.6918 | 0.6954 | 0.7068 | 0.6918 | | 0.2454 | 3.5 | 3500 | 1.2905 | 0.6976 | 0.7048 | 0.7138 | 0.6976 | | 0.1989 | 4.0 | 4000 | 1.2938 | 0.694 | 0.7016 | 0.7113 | 0.694 | | 0.1989 | 4.5 | 4500 | 1.3623 | 0.6972 | 0.7014 | 0.7062 | 0.6972 | | 0.1746 | 5.0 | 5000 | 1.3494 | 0.693 | 0.7003 | 0.7095 | 0.693 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3