Upload 5 files
Browse files- README.md +14 -0
- special_tokens_map.json +6 -0
- tokenizer.json +0 -0
- tokenizer_config.json +51 -0
- tokenizer_train.py +140 -0
README.md
CHANGED
@@ -1,3 +1,17 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
### How to use
|
6 |
+
###
|
7 |
+
```
|
8 |
+
from transformers import LlamaTokenizerFast
|
9 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("mimir-project/tokenizer", token=True)
|
10 |
+
```
|
11 |
+
or
|
12 |
+
```
|
13 |
+
from transformers import AutoTokenizer
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("mimir-project/tokenizer", token=True)
|
15 |
+
```
|
16 |
+
|
17 |
+
Copied from https://github.com/SmartmediaAI/MIMIR-project/tree/main
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "<pad>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<pad>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"bos_token": "<s>",
|
39 |
+
"bos_token_id": 1,
|
40 |
+
"clean_up_tokenization_spaces": false,
|
41 |
+
"eos_token": "</s>",
|
42 |
+
"eos_token_id": 2,
|
43 |
+
"model_max_length": 1000000000000000019884624838656,
|
44 |
+
"pad_token": "<pad>",
|
45 |
+
"pad_token_id": 3,
|
46 |
+
"padding_side": "right",
|
47 |
+
"tokenizer_class": "LlamaTokenizer",
|
48 |
+
"unk_token": "<unk>",
|
49 |
+
"unk_token_id": 0,
|
50 |
+
"use_default_system_prompt": false
|
51 |
+
}
|
tokenizer_train.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import argparse
|
3 |
+
from tqdm import tqdm
|
4 |
+
import os
|
5 |
+
|
6 |
+
from datasets import load_dataset
|
7 |
+
from tokenizers import SentencePieceBPETokenizer
|
8 |
+
from transformers import LlamaTokenizerFast, TrainingArguments, AutoTokenizer
|
9 |
+
|
10 |
+
def main(args):
|
11 |
+
|
12 |
+
# Load the dataset from the huggingface Hub and prepare it for training
|
13 |
+
if args.dataset_name is not None:
|
14 |
+
data_files = os.listdir(args.dataset_name)
|
15 |
+
data_files = [args.dataset_name+f for f in data_files]
|
16 |
+
print(len(data_files))
|
17 |
+
dataset = load_dataset("json",
|
18 |
+
data_files=data_files,
|
19 |
+
split=args.dataset_split,
|
20 |
+
token=args.hub_token if args.hub_token else None
|
21 |
+
)
|
22 |
+
print(dataset)
|
23 |
+
|
24 |
+
else:
|
25 |
+
raise ValueError("No dataset name provided or dataset is already tokenized")
|
26 |
+
|
27 |
+
# Remove non text columns
|
28 |
+
dataset = dataset.remove_columns([col for col in dataset.column_names if col != "text"])
|
29 |
+
|
30 |
+
# select `num_samples` from the dataset
|
31 |
+
dataset = dataset.shuffle(seed=args.seed).select(range(args.num_samples))
|
32 |
+
|
33 |
+
# Create a SentencePieceBPETokenizer
|
34 |
+
tokenizer = SentencePieceBPETokenizer()
|
35 |
+
|
36 |
+
# Train the SentencePieceBPETokenizer on the dataset
|
37 |
+
tokenizer.train_from_iterator(
|
38 |
+
iterator=dataset['text'],
|
39 |
+
vocab_size=args.vocab_size,
|
40 |
+
show_progress=True,
|
41 |
+
special_tokens=["<unk>", "<s>", "</s>", "<pad>"],
|
42 |
+
)
|
43 |
+
|
44 |
+
# Save the tokenizer
|
45 |
+
tokenizer.save("new-sentencepiece-tokenizer.json", pretty=True)
|
46 |
+
|
47 |
+
# Load reference tokenizer
|
48 |
+
if args.reference_tokenizer is not None and args.hub_token is not None:
|
49 |
+
reference_tokenizer = AutoTokenizer.from_pretrained(args.reference_tokenizer, token=args.hub_token if args.hub_token else None)
|
50 |
+
reference_tokenizer.save_pretrained("reference-tokenizer")
|
51 |
+
else:
|
52 |
+
raise ValueError("No tokenizer name provided or no hub token provided. Try using `--reference_tokenizer 'meta-llama/Llama-2-7b-hf'")
|
53 |
+
|
54 |
+
# Read and dump the json file for the new tokenizer and the reference tokenizer
|
55 |
+
with open("new-sentencepiece-tokenizer.json") as f:
|
56 |
+
new_llama_tokenizer_json = json.load(f)
|
57 |
+
|
58 |
+
with open("reference-tokenizer/tokenizer.json") as f:
|
59 |
+
reference_tokenizer_json = json.load(f)
|
60 |
+
|
61 |
+
# Add the reference tokenizer's config to the new tokenizer's config
|
62 |
+
new_llama_tokenizer_json["normalizer"] = reference_tokenizer_json["normalizer"]
|
63 |
+
new_llama_tokenizer_json["pre_tokenizer"] = reference_tokenizer_json["pre_tokenizer"]
|
64 |
+
new_llama_tokenizer_json["post_processor"] = reference_tokenizer_json["post_processor"]
|
65 |
+
new_llama_tokenizer_json["decoder"] = reference_tokenizer_json["decoder"]
|
66 |
+
new_llama_tokenizer_json["model"]['fuse_unk'] = reference_tokenizer_json["model"]['fuse_unk']
|
67 |
+
new_llama_tokenizer_json["model"]['byte_fallback'] = reference_tokenizer_json["model"]['byte_fallback']
|
68 |
+
|
69 |
+
# Dump the new tokenizer's config
|
70 |
+
with open("new-sentencepiece-tokenizer.json", "w") as f:
|
71 |
+
json.dump(new_llama_tokenizer_json, f, indent=2, ensure_ascii=False)
|
72 |
+
|
73 |
+
# Load the new tokenizer as a LlamaTokenizerFast
|
74 |
+
new_llama_tokenizer = LlamaTokenizerFast(
|
75 |
+
tokenizer_file="new-sentencepiece-tokenizer.json",
|
76 |
+
name_or_path=args.reference_tokenizer + "-tokenizer",
|
77 |
+
unk_token="<unk>",
|
78 |
+
unk_token_id=0,
|
79 |
+
bos_token="<s>",
|
80 |
+
bos_token_id=1,
|
81 |
+
eos_token="</s>",
|
82 |
+
eos_token_id=2,
|
83 |
+
pad_token="<pad>",
|
84 |
+
pad_token_id=3,
|
85 |
+
padding_side="right",
|
86 |
+
)
|
87 |
+
|
88 |
+
# Save the new tokenizer
|
89 |
+
new_llama_tokenizer.save_pretrained("new-llama-tokenizer")
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
parser = argparse.ArgumentParser(description="Train a new Llama tokenizer")
|
93 |
+
parser.add_argument(
|
94 |
+
"--dataset_name",
|
95 |
+
type=str,
|
96 |
+
default=None,
|
97 |
+
help="The name of the dataset to be tokenized",
|
98 |
+
)
|
99 |
+
parser.add_argument(
|
100 |
+
"--dataset_split",
|
101 |
+
type=str,
|
102 |
+
default=None,
|
103 |
+
help="The split of the dataset to be tokenized",
|
104 |
+
)
|
105 |
+
parser.add_argument(
|
106 |
+
"--hub_token",
|
107 |
+
type=str,
|
108 |
+
default=None,
|
109 |
+
help="The token to access the dataset on the hub",
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--reference_tokenizer",
|
113 |
+
type=str,
|
114 |
+
default=None,
|
115 |
+
help="The name of the reference tokenizer to use",
|
116 |
+
)
|
117 |
+
parser.add_argument(
|
118 |
+
"--seed",
|
119 |
+
type=int,
|
120 |
+
default=123,
|
121 |
+
help="set random seed",
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--num_samples",
|
125 |
+
type=int,
|
126 |
+
default=None,
|
127 |
+
help="Number of samples to use from the dataset",
|
128 |
+
)
|
129 |
+
parser.add_argument(
|
130 |
+
"--vocab_size",
|
131 |
+
type=int,
|
132 |
+
default=None,
|
133 |
+
help="Vocabulary size to use for the tokenizer",
|
134 |
+
)
|
135 |
+
args = parser.parse_args()
|
136 |
+
main(args)
|
137 |
+
|
138 |
+
# How to run:
|
139 |
+
# python tokenizer_train.py --dataset_name /mimir/dataset/delivery/mimir_base/data/ --dataset_split train --reference_tokenizer meta-llama/Llama-2-7b-hf --vocab_size 32768 --hub_token hf_IIbKlx.... --num_samples 6000000
|
140 |
+
|