minchul's picture
Upload directory
45e669a verified
raw
history blame
5.39 kB
import os
from typing import Union
import torch
from torch import device
from .utils import get_parameter_device, get_parameter_dtype, save_state_dict_and_config, load_state_dict_from_path
class BaseModel(torch.nn.Module):
"""
A base model class that provides a template for implementing models. It includes methods for
loading, saving, and managing model configurations and states. This class is designed to be
extended by specific model implementations.
Attributes:
config (object): Configuration object containing model settings.
input_color_flip (bool): Whether to flip the color channels from BGR to RGB.
"""
def __init__(self, config=None):
"""
Initializes the BaseModel class.
Parameters:
config (object, optional): Configuration object containing model settings.
"""
super(BaseModel, self).__init__()
self.config = config
if self.config.color_space == 'BGR':
self.input_color_flip = True
self._config_color_space = 'BGR'
self.config.color_space = 'RGB'
else:
self.input_color_flip = False
def forward(self, x):
"""
Forward pass of the model. Needs to be implemented in subclass.
Parameters:
x (torch.Tensor): Input tensor.
Raises:
NotImplementedError: If the subclass does not implement this method.
"""
raise NotImplementedError('forward must be implemented in subclass')
@classmethod
def from_config(cls, config) -> "BaseModel":
"""
Creates an instance of this class from a configuration object. Needs to be implemented in subclass.
Parameters:
config (object): Configuration object.
Returns:
BaseModel: An instance of the subclass.
Raises:
NotImplementedError: If the subclass does not implement this method.
"""
raise NotImplementedError('from_config must be implemented in subclass')
def make_train_transform(self):
"""
Creates training data transformations. Needs to be implemented in subclass.
Raises:
NotImplementedError: If the subclass does not implement this method.
"""
raise NotImplementedError('make_train_transform must be implemented in subclass')
def make_test_transform(self):
"""
Creates testing data transformations. Needs to be implemented in subclass.
Raises:
NotImplementedError: If the subclass does not implement this method.
"""
raise NotImplementedError('make_test_transform must be implemented in subclass')
def save_pretrained(
self,
save_dir: Union[str, os.PathLike],
name: str = 'model.pt',
rank: int = 0,
):
"""
Saves the model's state_dict and configuration to the specified directory.
Parameters:
save_dir (Union[str, os.PathLike]): The directory to save the model.
name (str, optional): The name of the file to save the model as. Default is 'model.pt'.
rank (int, optional): The rank of the process (used in distributed training). Default is 0.
"""
save_path = os.path.join(save_dir, name)
if rank == 0:
save_state_dict_and_config(self.state_dict(), self.config, save_path)
def load_state_dict_from_path(self, pretrained_model_path):
state_dict = load_state_dict_from_path(pretrained_model_path)
if 'net.vit' in list(self.state_dict().keys())[-1] and 'pretrained_models' in pretrained_model_path:
state_dict = {k.replace('net', 'net.vit'): v for k, v in state_dict.items()}
st_keys = list(state_dict.keys())
self_keys = list(self.state_dict().keys())
print('compatible keys in state_dict', len(set(st_keys).intersection(set(self_keys))), '/', len(st_keys))
print('Check\n\n')
result = self.load_state_dict(state_dict, strict=False)
print(result)
print(f"Loaded pretrained model from {pretrained_model_path}")
@property
def device(self) -> device:
"""
Returns the device of the model's parameters.
Returns:
device: The device the model is on.
"""
return get_parameter_device(self)
@property
def dtype(self) -> torch.dtype:
"""
Returns the data type of the model's parameters.
Returns:
torch.dtype: The data type of the model.
"""
return get_parameter_dtype(self)
def num_parameters(self, only_trainable: bool = False) -> int:
"""
Returns the number of parameters in the model, optionally filtering only trainable parameters.
Parameters:
only_trainable (bool, optional): Whether to count only trainable parameters. Default is False.
Returns:
int: The number of parameters.
"""
return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
def has_trainable_params(self):
"""
Checks if the model has any trainable parameters.
Returns:
bool: True if the model has trainable parameters, False otherwise.
"""
return any(p.requires_grad for p in self.parameters())