import os from typing import Union import torch from torch import device from .utils import get_parameter_device, get_parameter_dtype, save_state_dict_and_config, load_state_dict_from_path class BaseModel(torch.nn.Module): """ A base model class that provides a template for implementing models. It includes methods for loading, saving, and managing model configurations and states. This class is designed to be extended by specific model implementations. Attributes: config (object): Configuration object containing model settings. input_color_flip (bool): Whether to flip the color channels from BGR to RGB. """ def __init__(self, config=None): """ Initializes the BaseModel class. Parameters: config (object, optional): Configuration object containing model settings. """ super(BaseModel, self).__init__() self.config = config if self.config.color_space == 'BGR': self.input_color_flip = True self._config_color_space = 'BGR' self.config.color_space = 'RGB' else: self.input_color_flip = False def forward(self, x): """ Forward pass of the model. Needs to be implemented in subclass. Parameters: x (torch.Tensor): Input tensor. Raises: NotImplementedError: If the subclass does not implement this method. """ raise NotImplementedError('forward must be implemented in subclass') @classmethod def from_config(cls, config) -> "BaseModel": """ Creates an instance of this class from a configuration object. Needs to be implemented in subclass. Parameters: config (object): Configuration object. Returns: BaseModel: An instance of the subclass. Raises: NotImplementedError: If the subclass does not implement this method. """ raise NotImplementedError('from_config must be implemented in subclass') def make_train_transform(self): """ Creates training data transformations. Needs to be implemented in subclass. Raises: NotImplementedError: If the subclass does not implement this method. """ raise NotImplementedError('make_train_transform must be implemented in subclass') def make_test_transform(self): """ Creates testing data transformations. Needs to be implemented in subclass. Raises: NotImplementedError: If the subclass does not implement this method. """ raise NotImplementedError('make_test_transform must be implemented in subclass') def save_pretrained( self, save_dir: Union[str, os.PathLike], name: str = 'model.pt', rank: int = 0, ): """ Saves the model's state_dict and configuration to the specified directory. Parameters: save_dir (Union[str, os.PathLike]): The directory to save the model. name (str, optional): The name of the file to save the model as. Default is 'model.pt'. rank (int, optional): The rank of the process (used in distributed training). Default is 0. """ save_path = os.path.join(save_dir, name) if rank == 0: save_state_dict_and_config(self.state_dict(), self.config, save_path) def load_state_dict_from_path(self, pretrained_model_path): state_dict = load_state_dict_from_path(pretrained_model_path) if 'net.vit' in list(self.state_dict().keys())[-1] and 'pretrained_models' in pretrained_model_path: state_dict = {k.replace('net', 'net.vit'): v for k, v in state_dict.items()} st_keys = list(state_dict.keys()) self_keys = list(self.state_dict().keys()) print('compatible keys in state_dict', len(set(st_keys).intersection(set(self_keys))), '/', len(st_keys)) print('Check\n\n') result = self.load_state_dict(state_dict, strict=False) print(result) print(f"Loaded pretrained model from {pretrained_model_path}") @property def device(self) -> device: """ Returns the device of the model's parameters. Returns: device: The device the model is on. """ return get_parameter_device(self) @property def dtype(self) -> torch.dtype: """ Returns the data type of the model's parameters. Returns: torch.dtype: The data type of the model. """ return get_parameter_dtype(self) def num_parameters(self, only_trainable: bool = False) -> int: """ Returns the number of parameters in the model, optionally filtering only trainable parameters. Parameters: only_trainable (bool, optional): Whether to count only trainable parameters. Default is False. Returns: int: The number of parameters. """ return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable) def has_trainable_params(self): """ Checks if the model has any trainable parameters. Returns: bool: True if the model has trainable parameters, False otherwise. """ return any(p.requires_grad for p in self.parameters())