mindwrapped commited on
Commit
c7466bc
1 Parent(s): b2e71d6

Upload PPO BipedalWalker-v3 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 233.97 +/- 35.84
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 185.82 +/- 92.04
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a9cf9f7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a9cf9f830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a9cf9f8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a9cf9f950>", "_build": "<function ActorCriticPolicy._build at 0x7f1a9cf9f9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1a9cf9fa70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a9cf9fb00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1a9cf9fb90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a9cf9fc20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a9cf9fcb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a9cf9fd40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1a9cf756f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1900000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653012442.9990249, "learning_rate": 0.0003, "tensorboard_log": "runs/2tg23rbs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAJiewz4Jh+C93zl/Ppevtrz0vFW/4IucPACMI7zRCeI+AACAP0vjXj/6/38/zjdEP/n/fz8AAIA/GVaGPrxbhz7ZjYs+T46RPr72mz4MWrA+CL/PPjduAT/rbSs/AACAPwZuAj8pfoS8fadpPtbfc752rS2/suKXvmCZ6r6nwoc+AACAP2vgSz/Tj5U/YPMgP/v/f78AAAAAWzqIPtv8iD57q4s+TMSRPjQ2mj7Pw6c+9eK8PpRf5z6OFx4/AACAPx1sKD+kaf89oDKLPra7EL6MUvu+T94uv1B8i778/3+/AACAPyyGZT/ozG0+1ANnPgAAgL8AAAAAJI2+PiC3wD69dcc+XJ7TPpzg5j6fNgI/vkUZP52lPz8AAIA/AACAP3J1Or5zYzI8q7w3PlhZFD6ZnRC/jv5/P2BOLT8JAIC/AAAAAEgKhz9v/3+/ftuBP2kAgD8AAAAAci2iPvAEpD7OVqo+99W1Pv4syT5IUeI+IiEDPx2iHT+P1k0/AACAP4i1t71XJu07CYaUPv00eb5VYGy+Y7kIPjhzIr8AAAAAAAAAAEK3lT+t33Q/eIkivwAAAAAAAAAAi/KrPsh5rz7nxbc+DJrFPhgy2j7A8PY+8WgPP4iuLT+jEGU/AACAPyJHlT6KbXa6SGGZPoFAID0w0se+7rQYv2hV1r5DKjo/AACAP5q9ZT/7/8w9Kk1FP2whwL8AAAAAdAWNPsVojz6qVZU+2a+gPmb/sT455Ms+8Ij4PipCHD/1Xk8/AACAP2IQ9D6zzga+jZ94PuXsuT2+wzO/pd/1PkB7Q77ousI+AAAAAKREkT8AAAAA34qQPwEAgD8AAAAAREuTPvsnlD7BaZg+7WugPjXXrD4gS78+1wfgPn4uDD9Jakg/AACAP+b0VD/sTlC79yYpPilPQr2oYkW/SASDvoK1BL9pf7I9AAAAAOc3UT++fZE+UGUPPwAAgD8AAAAA6paOPjxhkD5unZU+guyePkI4rT5lhsI+vIXmPoSGDj8cHTg/AACAPxyZSz/zpZe8lKmePmUYP773fzy/U5uWvvAZ3L5Q5ta9AACAP6R/lj8AAIA/2lIPP2OlXz4AAAAAgT6bPmXXnT7WqKM+vPWrPl3Huj7RmtI+xDP3PlZmGT/9y0Y/AACAP4FgMT9aAYi9l16KPk8PPLy6vFW/AAC4NSCeOz1p8X8+AACAP6SItz50CmU+5ytNPwMAgD8AAAAAU3euPvgprz7Bq7M+pM67Pi6eyz4uFOQ+YxIDP5KdHT+DRlY/AACAP46hlT0UU1G9O8WCPrbg372rxgq+BACAP1Cr1r0BAIA/AAAAAFnyhz/u9m4/7SMOP///fz8AAAAAoJ/aPmxi3T5oXuU+99HxPjMiAz/KgxM/ATYvP/ewYD8AAIA/AACAP/MLqT6AY2e8MlDrPsBSI77UIbm+1vFHv8xb+777/38/AAAAAB17eT8EzI0/UBI3PwAAgL8AAAAA836TPvqZlj57kZ0+qwioPigxtj5nnsg+bUflPoJGDD+47D4/AACAP/1Clj48vkA+ppF2Pr1Hlj0HjAK/eBqHvxAMkb4BAIC/AAAAAA3YTD8BAIC/AOTGOgEAgL8AAAAAjjHMPhHvzT7FyNM+x7rbPsck7D43tQM/7I8YP+fMOD+B7Hg/AACAPzC/CT5uudO99yTYPqc9B70fjym/9DZAvizGhz6fEEA/AACAP+oRhj9qkw0/gh9RP/3/f78AAAAA32GkPta6qD4W868+vYK7PkAfzD7dS+I+EXEBP7LNHT+bAUU/AACAP2ED2z7tI1C+genhPi1jVD2rJTy/lPklP8AzIr5RVwY/AAAAAFs+XT+q8OU/Ls86P/3/f78AAAAAeISOPs4ikD6sI5U+N+SdPo4crD7PxcI+6DDtPi5PFz+V6EM/AACAP120ITvFNSc9LxsmPuWQvT0Iy0i/4Et1v9U1Dz/8/38/AACAP6REkT8AAAAAadRLP8+YFL8AAAAAnU2SPs9TkT4055Q+4PqdPsEIqj5Uebs+sI3aPn7GDj+mrUo/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.37194666666666665, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8WJhiJz8XECUhpRSlIwBbJRNQAaMAXSUR0CdT8RYzSCwdX2UKGgGaAloD0MImurJ/KNBYUCUhpRSlGgVTUAGaBZHQJ1TeB+Wnj11fZQoaAZoCWgPQwikMzDysshgQJSGlFKUaBVNQAZoFkdAnVRwVwgkknV9lChoBmgJaA9DCAfOGVFaiWBAlIaUUpRoFU1ABmgWR0CdVPZXdTHbdX2UKGgGaAloD0MIrYVZaGeyYECUhpRSlGgVTUAGaBZHQJ1U9/5Lytp1fZQoaAZoCWgPQwhuUtFY+6xcQJSGlFKUaBVNQAZoFkdAnVilYU34sXV9lChoBmgJaA9DCH/ZPXlYsVHAlIaUUpRoFU3uAWgWR0Cde2LzwtrcdX2UKGgGaAloD0MIGTxM+2bTYUCUhpRSlGgVTUAGaBZHQJ18dWuHN5d1fZQoaAZoCWgPQwhWurvOhpBfQJSGlFKUaBVNQAZoFkdAnX6EFSsKcHV9lChoBmgJaA9DCMeCwqBMzllAlIaUUpRoFU1ABmgWR0CdhMSLqD9PdX2UKGgGaAloD0MIIO9VK5NCYECUhpRSlGgVTUAGaBZHQJ2Hx/iHZbp1fZQoaAZoCWgPQwhhF0UPfLVhQJSGlFKUaBVNQAZoFkdAnYjOCsfaH3V9lChoBmgJaA9DCPCiryDNUl1AlIaUUpRoFU1ABmgWR0CdilZuAI6bdX2UKGgGaAloD0MILskBuxpBYECUhpRSlGgVTUAGaBZHQJ2PEenyd4F1fZQoaAZoCWgPQwhjY15HHPhUwJSGlFKUaBVNGAFoFkdAnZFvikwevXV9lChoBmgJaA9DCIgNFk5SQmBAlIaUUpRoFU1ABmgWR0CdrMrZamoBdX2UKGgGaAloD0MIWYtPATBKXECUhpRSlGgVTUAGaBZHQJ2tHq1PWQR1fZQoaAZoCWgPQwigVPt0PBJgQJSGlFKUaBVNQAZoFkdAna9ijQAuI3V9lChoBmgJaA9DCH+JeOv8XGBAlIaUUpRoFU1ABmgWR0Cdr/z4DcM3dX2UKGgGaAloD0MIO+KQDaQgXkCUhpRSlGgVTUAGaBZHQJ20EIrvsqt1fZQoaAZoCWgPQwithsQ9lrRkQJSGlFKUaBVNQAZoFkdAnbUuuvECNnV9lChoBmgJaA9DCI9srppnt2FAlIaUUpRoFU1ABmgWR0CdtcfcvduYdX2UKGgGaAloD0MI58OzBBlNW0CUhpRSlGgVTUAGaBZHQJ26IAWBSUF1fZQoaAZoCWgPQwjaHyi37S5iQJSGlFKUaBVNQAZoFkdAnhINc8kleHV9lChoBmgJaA9DCOrpI/CHn1xAlIaUUpRoFU1ABmgWR0CeExu+RHPNdX2UKGgGaAloD0MI3eo56X1VX0CUhpRSlGgVTUAGaBZHQJ4VNFH8TBZ1fZQoaAZoCWgPQwjfp6rQQJRfQJSGlFKUaBVNQAZoFkdAnjKFefI0ZXV9lChoBmgJaA9DCLK8qx4wyzPAlIaUUpRoFU1JBGgWR0CeNnjin5zpdX2UKGgGaAloD0MIqRPQRFisYECUhpRSlGgVTUAGaBZHQJ42lIOH3111fZQoaAZoCWgPQwjfqYB7HtlhQJSGlFKUaBVNQAZoFkdAnjgd+w1R+HV9lChoBmgJaA9DCHY25J8Z6lxAlIaUUpRoFU1ABmgWR0CePI7IDHOsdX2UKGgGaAloD0MIVkRN9PlWYUCUhpRSlGgVTUAGaBZHQJ4+7b349HN1fZQoaAZoCWgPQwhAM4gP7BZPwJSGlFKUaBVNFQJoFkdAnkQ7JGOMl3V9lChoBmgJaA9DCIDW/PhLfF5AlIaUUpRoFU1ABmgWR0CeRFnnuAqedX2UKGgGaAloD0MIrMYS1sY2YECUhpRSlGgVTUAGaBZHQJ5EsbxVhkR1fZQoaAZoCWgPQwigNT/+0ulQwJSGlFKUaBVNogFoFkdAnkYak2xY73V9lChoBmgJaA9DCPm/IyrUg2BAlIaUUpRoFU1ABmgWR0CeR/sfaHsUdX2UKGgGaAloD0MIste7P17zYECUhpRSlGgVTUAGaBZHQJ5MM99tuUF1fZQoaAZoCWgPQwgwD5nyoWZhQJSGlFKUaBVNQAZoFkdAnk1GQwK0D3V9lChoBmgJaA9DCEpE+BdBdlxAlIaUUpRoFU1ABmgWR0CeTdqD9OyndX2UKGgGaAloD0MIhIO9iSFlRcCUhpRSlGgVTfECaBZHQJ5li7voePt1fZQoaAZoCWgPQwj1aRX9odZgQJSGlFKUaBVNQAZoFkdAnmfc3++/QHV9lChoBmgJaA9DCCk8aHbdHFPAlIaUUpRoFU12AWgWR0CeaZ1wHZ9NdX2UKGgGaAloD0MIlSu8y0VIWcCUhpRSlGgVS3ZoFkdAnmtkPUaybHV9lChoBmgJaA9DCJV87C7QOGJAlIaUUpRoFU1ABmgWR0Cecn3FDOTrdX2UKGgGaAloD0MIa9WuCWmQYECUhpRSlGgVTUAGaBZHQJ5zbT3IuGt1fZQoaAZoCWgPQwhkAn6NJDBhQJSGlFKUaBVNQAZoFkdAnnU+Ay2x6nV9lChoBmgJaA9DCPgaguMypEXAlIaUUpRoFU34AmgWR0CeeNU47zTXdX2UKGgGaAloD0MIIjXtYprpYkCUhpRSlGgVTUAGaBZHQJ5+FjNIK+l1fZQoaAZoCWgPQwjP9X04SP5gQJSGlFKUaBVNQAZoFkdAnpe3bEgnt3V9lChoBmgJaA9DCHKHTWTm2EjAlIaUUpRoFU0tAmgWR0CemWjOcDr7dX2UKGgGaAloD0MIPpY+dEGpX0CUhpRSlGgVTUAGaBZHQJ6ZpGb1AZ91fZQoaAZoCWgPQwgrE36pn5NgQJSGlFKUaBVNQAZoFkdAnp4qL4vexnV9lChoBmgJaA9DCCDPLt96aGFAlIaUUpRoFU1ABmgWR0CenkIuoP07dX2UKGgGaAloD0MIHZJaKBktZECUhpRSlGgVTUAGaBZHQJ6eigRK6Fx1fZQoaAZoCWgPQwg7inPU0SpYwJSGlFKUaBVLrWgWR0CenoWyTpxFdX2UKGgGaAloD0MIrDsW26RvXkCUhpRSlGgVTUAGaBZHQJ6frLjghr51fZQoaAZoCWgPQwgQPL69a9pCQJSGlFKUaBVNqAVoFkdAnqNzQu27WnV9lChoBmgJaA9DCBKGAUsuwmFAlIaUUpRoFU1ABmgWR0CepbpL26CldX2UKGgGaAloD0MIPrK5ah4AYkCUhpRSlGgVTUAGaBZHQJ6mPcXWOIZ1fZQoaAZoCWgPQwhJ2o0+5qhQwJSGlFKUaBVNdAFoFkdAnqjE8A7xNXV9lChoBmgJaA9DCAXFjzF3B0fAlIaUUpRoFU27AmgWR0CeqyTPjXFtdX2UKGgGaAloD0MI0csoltuoYUCUhpRSlGgVTUAGaBZHQJ6rhsCT2WZ1fZQoaAZoCWgPQwj75ZMVQ5FhQJSGlFKUaBVNQAZoFkdAnq02KVII4XV9lChoBmgJaA9DCEqYaftXMkvAlIaUUpRoFU2qAmgWR0Ce5NYWcjJNdX2UKGgGaAloD0MIY3/ZPXk6ZECUhpRSlGgVTUAGaBZHQJ7mkUZeiSJ1fZQoaAZoCWgPQwj1gHnIFOFiQJSGlFKUaBVNQAZoFkdAnv3pDiOvMnV9lChoBmgJaA9DCP7RN2maB2RAlIaUUpRoFU1ABmgWR0CfA1WY4Qz2dX2UKGgGaAloD0MIUOPe/IajWMCUhpRSlGgVS4FoFkdAnwc2cnVoYnV9lChoBmgJaA9DCNOh0/NuOGJAlIaUUpRoFU1ABmgWR0CfCO7j1f3OdX2UKGgGaAloD0MIPGcLCK2HP8CUhpRSlGgVTc0CaBZHQJ8JUZCOWB11fZQoaAZoCWgPQwggzy7f+olkQJSGlFKUaBVNQAZoFkdAnw/35WRzR3V9lChoBmgJaA9DCLtemiLA10ZAlIaUUpRoFU0rBmgWR0CfFHZU1hsqdX2UKGgGaAloD0MIzH1yFKBLY0CUhpRSlGgVTUAGaBZHQJ8VIyj59E11fZQoaAZoCWgPQwgW26SisSJjQJSGlFKUaBVNQAZoFkdAnxVtsFdLQHV9lChoBmgJaA9DCOj2ksZofVvAlIaUUpRoFUs4aBZHQJ8WxDF6zE91fZQoaAZoCWgPQwhwJNBgU29BQJSGlFKUaBVNhAVoFkdAnxeMjeKsMnV9lChoBmgJaA9DCIKPwYpTmWFAlIaUUpRoFU1ABmgWR0CfGqEF4cFRdX2UKGgGaAloD0MIAimxa/urY0CUhpRSlGgVTUAGaBZHQJ8x/G3nZCh1fZQoaAZoCWgPQwh2qKYka91kQJSGlFKUaBVNQAZoFkdAnzSODrZ8KHV9lChoBmgJaA9DCFOynITSKGRAlIaUUpRoFU1ABmgWR0CfNtsRxtHhdX2UKGgGaAloD0MI6IcRwqMiUMCUhpRSlGgVTUwBaBZHQJ84YWDYh+x1fZQoaAZoCWgPQwgQBTOmYLhhQJSGlFKUaBVNQAZoFkdAnzj5uAI6bXV9lChoBmgJaA9DCAkWhzM/9WJAlIaUUpRoFU1ABmgWR0CfPla8Yht+dX2UKGgGaAloD0MI5CzsaYfdZECUhpRSlGgVTUAGaBZHQJ8/qv9tMwl1fZQoaAZoCWgPQwj3IW+5egBjQJSGlFKUaBVNQAZoFkdAn0CF5GBnSXV9lChoBmgJaA9DCNhhTPp7fUZAlIaUUpRoFU1kBWgWR0CfRKSyt3fRdX2UKGgGaAloD0MIBKvq5fdhY0CUhpRSlGgVTUAGaBZHQJ9JHgwXZXd1fZQoaAZoCWgPQwjeIcUACQxjQJSGlFKUaBVNQAZoFkdAn0sTpLVWj3V9lChoBmgJaA9DCPhwyXGn9Ou/lIaUUpRoFU0LBGgWR0CfYruNxVABdX2UKGgGaAloD0MINbVsrS+TZUCUhpRSlGgVTUAGaBZHQJ9lmMGX5WR1fZQoaAZoCWgPQwjRBfUt80RjQJSGlFKUaBVNQAZoFkdAn2mdcry1/nV9lChoBmgJaA9DCDfGTngJ7lxAlIaUUpRoFU1ABmgWR0CfaoRoh6jWdX2UKGgGaAloD0MIYJLKFHOiT8CUhpRSlGgVTRMCaBZHQJ9ruZof0Vd1fZQoaAZoCWgPQwix+47hMTBgQJSGlFKUaBVNQAZoFkdAn2u9tdiUgXV9lChoBmgJaA9DCCfaVUj57F9AlIaUUpRoFU1ABmgWR0CfbHPAfuCxdX2UKGgGaAloD0MI9ihcj8IMYkCUhpRSlGgVTUAGaBZHQJ90oF8ohIR1fZQoaAZoCWgPQwigppatdaFjQJSGlFKUaBVNQAZoFkdAn3bmQSzw+nV9lChoBmgJaA9DCEn0MorlQWNAlIaUUpRoFU1ABmgWR0CfeFnMdLg5dX2UKGgGaAloD0MIn1voSoQiZECUhpRSlGgVTUAGaBZHQJ9497iQ1aZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fccb306d560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccb306d5f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccb306d680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccb306d710>", "_build": "<function ActorCriticPolicy._build at 0x7fccb306d7a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fccb306d830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccb306d8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fccb306d950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccb306d9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccb306da70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccb306db00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fccb3045120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVYwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsYhZRoColDYAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLGIWUaAqJQ2AAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSxiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsYhZRoKolDGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsEhZRoColDEAAAgL8AAIC/AACAvwAAgL+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwSFlGgKiUMQAACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLBIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwQBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsEhZRoKolDBAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 8, "num_timesteps": 1400000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654481587.9805398, "learning_rate": 0.0003, "tensorboard_log": "runs/2vfswazc", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQMAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwhLGIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAwAAoK0wPy6St72JppM+gJ+kPaO8Vb8AePm54CYWPVtYCD8AAIA/qSyRPwCApTccVm8/VRVHOQAAAABWQas+WKKsPiEjsD7km7g+lRbHPg/b2z7F8/w+CVAhP8IiZz8AAIA/zYvJPhPvDD0tOXg+jXEMvubVzr5iMiy/SJIhvwAAAAAAAAAAHu2CP4hfBz8gHcS9/f9/PwAAAADmU5w+y/6ePrDRpT58JbE+eF3DPvnb3z5wqgQ/6tEqP7elbj8AAIA/RPSXvRiRKz0355Q+RlS3PO5L/bxQkXM/sLIJvwEAgL8AAAAA3IeOPwAAAACwhgU+AIa5uwAAAABpyLg+/r28PgxlxT6739Q+iQ/qPiwuBD836hk/LN9CPwAAgD8AAIA/RH34PQxsPT0pjWg+Zc02PWzdxb7s/38/AIlCvAEAgL8AAAAAuQiQPwAAADNAV4G8+P9/vwAAAADAyak+me+qPuN7sD73Pbs+3Q3NPszh6D5LoQs/2akyP77Ucz8AAIA/L+MYvfMFD77gOek+M8QEvYy8Vb8AAAAAKClGP///fz8AAAAAKq2NPwAAAAA1sVs/gbfYPwAAgD9BR5Q+rO+VPryCmj7Rt6I+zUWwPpaSxT5t3uc+TaoPP+NxPD8AAIA/5nmcvW4uyjut9Bw+6SLfPXDeVb8AAEE15hwbP+L/nL4AAIA/BXGRPwAAgLIitHA/CeiWvgAAAABSvoM+G4yGPgWBjD4u2pU+C/mjPvCvuD7Qltw+TOsKP4M+OT8AAIA/xRqgPjxsGb3F994+bpmyvD/bEb+YSYC/IN5uvpXAcD8AAIA/2A+OP+BAFD+Ey1I/vfx/PwAAAADtnI4+ijuQPsdHlT5WYZ4+QMusPsvowj4egeI+IjMMP++ROz8AAIA/8GTYPvTp971NTqc+xREvPVXnVL8AAAAAaEsyPlvUOj8AAIA/aHmOP6TUer78vHA//P9/PwAAAAAaDZU+qnmUPpjelz7btp8+C/CsPvmFwD6YieE+w70LP37zRz8AAIA/lHSUYi4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYi4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.5357866666666666, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICW05l+JqWsCUhpRSlIwBbJRLN4wBdJRHQJTZv0+TvAp1fZQoaAZoCWgPQwjxoNl1b4diQJSGlFKUaBVNQAZoFkdAlN06WC2+f3V9lChoBmgJaA9DCAKdSZuqsmRAlIaUUpRoFU1ABmgWR0CU31189fTkdX2UKGgGaAloD0MIgZauYBsNYUCUhpRSlGgVTUAGaBZHQJTu1r9ETg51fZQoaAZoCWgPQwi6hhkaz+hiQJSGlFKUaBVNQAZoFkdAlO+BcE/0NHV9lChoBmgJaA9DCA0AVdy47WNAlIaUUpRoFU1ABmgWR0CU8UX5FgDzdX2UKGgGaAloD0MI/g5FgT68YkCUhpRSlGgVTUAGaBZHQJTzY+zMRpV1fZQoaAZoCWgPQwjL2xFOC2NhQJSGlFKUaBVNQAZoFkdAlPRlUyYXwnV9lChoBmgJaA9DCOxLNh5s7VrAlIaUUpRoFUtVaBZHQJT0t/qgRK91fZQoaAZoCWgPQwiE2JlCZ9FiQJSGlFKUaBVNQAZoFkdAlQaxNEgGKXV9lChoBmgJaA9DCBlz1xJyymJAlIaUUpRoFU1ABmgWR0CVCj7q6e5GdX2UKGgGaAloD0MIm+jzUUYtWMCUhpRSlGgVS4FoFkdAlQxO32EkB3V9lChoBmgJaA9DCI3vi0tVmV5AlIaUUpRoFU1ABmgWR0CVDFsBQvYfdX2UKGgGaAloD0MIwwyNJ4L8RECUhpRSlGgVTR8GaBZHQJURX0Dlo111fZQoaAZoCWgPQwgVGR2QhNNjQJSGlFKUaBVNQAZoFkdAlRKRS9/SY3V9lChoBmgJaA9DCG8QrRVtg19AlIaUUpRoFU1ABmgWR0CVFGS+QEIPdX2UKGgGaAloD0MIAoI5evz+YUCUhpRSlGgVTUAGaBZHQJUhNBmf5DZ1fZQoaAZoCWgPQwj3HcNjv09lQJSGlFKUaBVNQAZoFkdAlSGGZNO/L3V9lChoBmgJaA9DCOC6Ykb422VAlIaUUpRoFU1ABmgWR0CVKdXeFcptdX2UKGgGaAloD0MI8ItLVdpKSMCUhpRSlGgVTdsCaBZHQJUtPTspobp1fZQoaAZoCWgPQwhSgCiYMSdEQJSGlFKUaBVNuAVoFkdAlS1Tc6/7BXV9lChoBmgJaA9DCEX11sBWd2RAlIaUUpRoFU1ABmgWR0CVL3okAxSHdX2UKGgGaAloD0MIZi/bTlvkY0CUhpRSlGgVTUAGaBZHQJU+QdtEXtV1fZQoaAZoCWgPQwj+1eO+VZ5lQJSGlFKUaBVNQAZoFkdAlT9//JeVs3V9lChoBmgJaA9DCISc9//xpmJAlIaUUpRoFU1ABmgWR0CVQVq5LAYYdX2UKGgGaAloD0MI+Ki/XmH3XkCUhpRSlGgVTUAGaBZHQJVEhoWYWtV1fZQoaAZoCWgPQwhxy0dS0mViQJSGlFKUaBVNQAZoFkdAlX/fwZwXInV9lChoBmgJaA9DCMl3KXXJK2RAlIaUUpRoFU1ABmgWR0CVg0D3dsSCdX2UKGgGaAloD0MI3smnx7YRYkCUhpRSlGgVTUAGaBZHQJWDV0+1Sfl1fZQoaAZoCWgPQwiemWA4VyBjQJSGlFKUaBVNQAZoFkdAlYWGMOwxFnV9lChoBmgJaA9DCPiMRGgEEmNAlIaUUpRoFU1ABmgWR0CVioNTcZccdX2UKGgGaAloD0MIMC/APrpbY0CUhpRSlGgVTUAGaBZHQJWLtirksBh1fZQoaAZoCWgPQwifyJOka8VfQJSGlFKUaBVNQAZoFkdAlZdDOC5Et3V9lChoBmgJaA9DCGQjEK/r0mJAlIaUUpRoFU1ABmgWR0CVmmSg5BC2dX2UKGgGaAloD0MIPKHXn8SlY0CUhpRSlGgVTUAGaBZHQJWi91wHZ9N1fZQoaAZoCWgPQwjON6J71gUTQJSGlFKUaBVN+ARoFkdAlaNZCF9KEnV9lChoBmgJaA9DCLh1N0/1h2RAlIaUUpRoFU1ABmgWR0CVpm3vx6OYdX2UKGgGaAloD0MI51QyANQtYECUhpRSlGgVTUAGaBZHQJWmhMtbs4V1fZQoaAZoCWgPQwi5bkp5LaRiQJSGlFKUaBVNQAZoFkdAlbef9Hc1wnV9lChoBmgJaA9DCDSGOUEbNWFAlIaUUpRoFU1ABmgWR0CVuN42jwhGdX2UKGgGaAloD0MIrweT4uNzScCUhpRSlGgVTRkCaBZHQJW47bRF7Up1fZQoaAZoCWgPQwiTNlX3yHpmQJSGlFKUaBVNQAZoFkdAlbqxh+fAbnV9lChoBmgJaA9DCHnMQGV8KmRAlIaUUpRoFU1ABmgWR0CVvc3yqdYodX2UKGgGaAloD0MI5E1+i84kYUCUhpRSlGgVTUAGaBZHQJXQMvK2a2F1fZQoaAZoCWgPQwj4FtaNdwpiQJSGlFKUaBVNQAZoFkdAldCeumrKeXV9lChoBmgJaA9DCAK8BRIU9VjAlIaUUpRoFUtWaBZHQJXRmwxFiKB1fZQoaAZoCWgPQwjn4m97giRkQJSGlFKUaBVNQAZoFkdAldPGBz3h43V9lChoBmgJaA9DCGGNs+kIaFTAlIaUUpRoFU05AWgWR0CV1sdTYNAkdX2UKGgGaAloD0MIZFdaRur1WMCUhpRSlGgVS31oFkdAldjERjBl+XV9lChoBmgJaA9DCJhO6zaokVnAlIaUUpRoFUtXaBZHQJXaKvV3EAJ1fZQoaAZoCWgPQwgwuycPCzdjQJSGlFKUaBVNQAZoFkdAldsrnX/YJ3V9lChoBmgJaA9DCOSh725lw11AlIaUUpRoFU1ABmgWR0CV5hbMottidX2UKGgGaAloD0MIqoHmc27zYkCUhpRSlGgVTUAGaBZHQJXmJxcVxjt1fZQoaAZoCWgPQwg5Yi0+hZxkQJSGlFKUaBVNQAZoFkdAlefz4Hoou3V9lChoBmgJaA9DCNBjlGfeOmVAlIaUUpRoFU1ABmgWR0CV6xb2USqVdX2UKGgGaAloD0MILuOmBpp9RsCUhpRSlGgVTRQCaBZHQJXtbcQAdXF1fZQoaAZoCWgPQwguq7AZ4MRTwJSGlFKUaBVL6GgWR0CV7tUx20RfdX2UKGgGaAloD0MIEeSghJkTZECUhpRSlGgVTUAGaBZHQJX0He3x4IN1fZQoaAZoCWgPQwgRkC+hgrVdQJSGlFKUaBVNQAZoFkdAlgDcc2itaXV9lChoBmgJaA9DCD9XW7G/0mBAlIaUUpRoFU1ABmgWR0CWBzckdFOPdX2UKGgGaAloD0MIFr1TAfcGZECUhpRSlGgVTUAGaBZHQJYJZFNL1291fZQoaAZoCWgPQwhi1ouhnLRhQJSGlFKUaBVNQAZoFkdAlgl0J4SpSHV9lChoBmgJaA9DCHk+A+rNwWFAlIaUUpRoFU1ABmgWR0CWC0Ex7AtWdX2UKGgGaAloD0MIyVnY0w4HTcCUhpRSlGgVTcIBaBZHQJYaWpKjBVN1fZQoaAZoCWgPQwhsI57sZpZhQJSGlFKUaBVNQAZoFkdAlhpsunMt9XV9lChoBmgJaA9DCGh23VuRTmZAlIaUUpRoFU1ABmgWR0CWG9c8TzundX2UKGgGaAloD0MIK98zEqFNV8CUhpRSlGgVS79oFkdAlh18wQDmsHV9lChoBmgJaA9DCBLcSNmiuGZAlIaUUpRoFU1ABmgWR0CWIT+zMRpUdX2UKGgGaAloD0MIjPSidr8NZUCUhpRSlGgVTUAGaBZHQJYkTlKbrkd1fZQoaAZoCWgPQwiTxmgdVRNjQJSGlFKUaBVNQAZoFkdAljRl4cFQmHV9lChoBmgJaA9DCPvo1JXPTmVAlIaUUpRoFU1ABmgWR0CWNotga3qidX2UKGgGaAloD0MIA5SGGoU4ZkCUhpRSlGgVTUAGaBZHQJY4WpfhMrV1fZQoaAZoCWgPQwguck9X95xhQJSGlFKUaBVNQAZoFkdAlj29ycTakHV9lChoBmgJaA9DCDwSL09nl2JAlIaUUpRoFU1ABmgWR0CWPyqRlpXZdX2UKGgGaAloD0MIE0n0MorjY0CUhpRSlGgVTUAGaBZHQJZA2+AVfu11fZQoaAZoCWgPQwguq7AZ4J5ZwJSGlFKUaBVLQmgWR0CWQd/FBIFvdX2UKGgGaAloD0MIUp0OZD2cZUCUhpRSlGgVTUAGaBZHQJZOPqFAVwh1fZQoaAZoCWgPQwiEnPf/8WxiQJSGlFKUaBVNQAZoFkdAllE/KuB+WnV9lChoBmgJaA9DCGHj+nd9XjLAlIaUUpRoFU3KA2gWR0CWUZlMRHwxdX2UKGgGaAloD0MIpKgz95BJWMCUhpRSlGgVS01oFkdAllLRJul41XV9lChoBmgJaA9DCHKMZI/QamZAlIaUUpRoFU1ABmgWR0CWV5KQ7tAtdX2UKGgGaAloD0MIWOIBZdNUZECUhpRSlGgVTUAGaBZHQJZZwToMa0h1fZQoaAZoCWgPQwibj2tDRe1iQJSGlFKUaBVNQAZoFkdAlmru+RHPNXV9lChoBmgJaA9DCBZRE30+omNAlIaUUpRoFU1ABmgWR0CWbTFd9lVcdX2UKGgGaAloD0MIVyWRfZAaWMCUhpRSlGgVS2RoFkdAlm+pwfhddHV9lChoBmgJaA9DCF+bjZWYoWRAlIaUUpRoFU1ABmgWR0CWcV0YTCcgdX2UKGgGaAloD0MIhlW8kXmANECUhpRSlGgVTbMEaBZHQJZym3/givB1fZQoaAZoCWgPQwh0t+ulKfIsQJSGlFKUaBVN8wVoFkdAlnMq55JK8XV9lChoBmgJaA9DCPLs8q2PdmVAlIaUUpRoFU1ABmgWR0CWd11uR9w4dX2UKGgGaAloD0MIRBZp4h1BZUCUhpRSlGgVTUAGaBZHQJaHd04iosJ1fZQoaAZoCWgPQwhsIchBCVNkQJSGlFKUaBVNQAZoFkdAlomw3gk1M3V9lChoBmgJaA9DCDMa+bziMS9AlIaUUpRoFU3ZA2gWR0CWjJ7KJVKgdX2UKGgGaAloD0MIIJp5ck0BZECUhpRSlGgVTUAGaBZHQJaQ6ApazNV1fZQoaAZoCWgPQwhTexFtx3hHQJSGlFKUaBVNPAVoFkdAlpGxP9DQaHV9lChoBmgJaA9DCFcFajH4q2RAlIaUUpRoFU1ABmgWR0CWk+jiGWUsdX2UKGgGaAloD0MIjdMQVXiPYkCUhpRSlGgVTUAGaBZHQJaVAImgJ1J1fZQoaAZoCWgPQwiHbYsyG0wvwJSGlFKUaBVNmwNoFkdAlqIZzcRDkXV9lChoBmgJaA9DCINPc/IiU2RAlIaUUpRoFU1ABmgWR0CWpFMc6vJSdX2UKGgGaAloD0MIdlH0wEeYY0CUhpRSlGgVTUAGaBZHQJaqyIacZtN1fZQoaAZoCWgPQwj4UQ37PUkrQJSGlFKUaBVNWAVoFkdAlqw4U34sVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 680, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-BipedalWalker-v3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:75b3171ce18456476173f4482c7527867c760941211b47bd68d1b0b68308624f
3
- size 171947
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2306352c7c07878f82edf489e248ff6093de4bd2ec440c027a1f9440084ca376
3
+ size 171057
ppo-BipedalWalker-v3/data CHANGED
@@ -1,28 +1,28 @@
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
- ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a9cf9f7a0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a9cf9f830>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a9cf9f8c0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a9cf9f950>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f1a9cf9f9e0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f1a9cf9fa70>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a9cf9fb00>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f1a9cf9fb90>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a9cf9fc20>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a9cf9fcb0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a9cf9fd40>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f1a9cf756f0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
  "dtype": "float32",
27
  "_shape": [
28
  24
@@ -35,7 +35,7 @@
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.box.Box'>",
38
- ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
39
  "dtype": "float32",
40
  "_shape": [
41
  4
@@ -46,41 +46,41 @@
46
  "bounded_above": "[ True True True True]",
47
  "_np_random": null
48
  },
49
- "n_envs": 16,
50
- "num_timesteps": 1900000,
51
  "_total_timesteps": 3000000,
52
  "_num_timesteps_at_start": 0,
53
  "seed": null,
54
  "action_noise": null,
55
- "start_time": 1653012442.9990249,
56
  "learning_rate": 0.0003,
57
- "tensorboard_log": "runs/2tg23rbs",
58
  "lr_schedule": {
59
  ":type:": "<class 'function'>",
60
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
  },
62
  "_last_obs": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
- ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAJiewz4Jh+C93zl/Ppevtrz0vFW/4IucPACMI7zRCeI+AACAP0vjXj/6/38/zjdEP/n/fz8AAIA/GVaGPrxbhz7ZjYs+T46RPr72mz4MWrA+CL/PPjduAT/rbSs/AACAPwZuAj8pfoS8fadpPtbfc752rS2/suKXvmCZ6r6nwoc+AACAP2vgSz/Tj5U/YPMgP/v/f78AAAAAWzqIPtv8iD57q4s+TMSRPjQ2mj7Pw6c+9eK8PpRf5z6OFx4/AACAPx1sKD+kaf89oDKLPra7EL6MUvu+T94uv1B8i778/3+/AACAPyyGZT/ozG0+1ANnPgAAgL8AAAAAJI2+PiC3wD69dcc+XJ7TPpzg5j6fNgI/vkUZP52lPz8AAIA/AACAP3J1Or5zYzI8q7w3PlhZFD6ZnRC/jv5/P2BOLT8JAIC/AAAAAEgKhz9v/3+/ftuBP2kAgD8AAAAAci2iPvAEpD7OVqo+99W1Pv4syT5IUeI+IiEDPx2iHT+P1k0/AACAP4i1t71XJu07CYaUPv00eb5VYGy+Y7kIPjhzIr8AAAAAAAAAAEK3lT+t33Q/eIkivwAAAAAAAAAAi/KrPsh5rz7nxbc+DJrFPhgy2j7A8PY+8WgPP4iuLT+jEGU/AACAPyJHlT6KbXa6SGGZPoFAID0w0se+7rQYv2hV1r5DKjo/AACAP5q9ZT/7/8w9Kk1FP2whwL8AAAAAdAWNPsVojz6qVZU+2a+gPmb/sT455Ms+8Ij4PipCHD/1Xk8/AACAP2IQ9D6zzga+jZ94PuXsuT2+wzO/pd/1PkB7Q77ousI+AAAAAKREkT8AAAAA34qQPwEAgD8AAAAAREuTPvsnlD7BaZg+7WugPjXXrD4gS78+1wfgPn4uDD9Jakg/AACAP+b0VD/sTlC79yYpPilPQr2oYkW/SASDvoK1BL9pf7I9AAAAAOc3UT++fZE+UGUPPwAAgD8AAAAA6paOPjxhkD5unZU+guyePkI4rT5lhsI+vIXmPoSGDj8cHTg/AACAPxyZSz/zpZe8lKmePmUYP773fzy/U5uWvvAZ3L5Q5ta9AACAP6R/lj8AAIA/2lIPP2OlXz4AAAAAgT6bPmXXnT7WqKM+vPWrPl3Huj7RmtI+xDP3PlZmGT/9y0Y/AACAP4FgMT9aAYi9l16KPk8PPLy6vFW/AAC4NSCeOz1p8X8+AACAP6SItz50CmU+5ytNPwMAgD8AAAAAU3euPvgprz7Bq7M+pM67Pi6eyz4uFOQ+YxIDP5KdHT+DRlY/AACAP46hlT0UU1G9O8WCPrbg372rxgq+BACAP1Cr1r0BAIA/AAAAAFnyhz/u9m4/7SMOP///fz8AAAAAoJ/aPmxi3T5oXuU+99HxPjMiAz/KgxM/ATYvP/ewYD8AAIA/AACAP/MLqT6AY2e8MlDrPsBSI77UIbm+1vFHv8xb+777/38/AAAAAB17eT8EzI0/UBI3PwAAgL8AAAAA836TPvqZlj57kZ0+qwioPigxtj5nnsg+bUflPoJGDD+47D4/AACAP/1Clj48vkA+ppF2Pr1Hlj0HjAK/eBqHvxAMkb4BAIC/AAAAAA3YTD8BAIC/AOTGOgEAgL8AAAAAjjHMPhHvzT7FyNM+x7rbPsck7D43tQM/7I8YP+fMOD+B7Hg/AACAPzC/CT5uudO99yTYPqc9B70fjym/9DZAvizGhz6fEEA/AACAP+oRhj9qkw0/gh9RP/3/f78AAAAA32GkPta6qD4W868+vYK7PkAfzD7dS+I+EXEBP7LNHT+bAUU/AACAP2ED2z7tI1C+genhPi1jVD2rJTy/lPklP8AzIr5RVwY/AAAAAFs+XT+q8OU/Ls86P/3/f78AAAAAeISOPs4ikD6sI5U+N+SdPo4crD7PxcI+6DDtPi5PFz+V6EM/AACAP120ITvFNSc9LxsmPuWQvT0Iy0i/4Et1v9U1Dz/8/38/AACAP6REkT8AAAAAadRLP8+YFL8AAAAAnU2SPs9TkT4055Q+4PqdPsEIqj5Uebs+sI3aPn7GDj+mrUo/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
65
  },
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
68
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
69
  },
70
  "_last_original_obs": null,
71
  "_episode_num": 0,
72
  "use_sde": false,
73
  "sde_sample_freq": -1,
74
- "_current_progress_remaining": 0.37194666666666665,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
- ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8WJhiJz8XECUhpRSlIwBbJRNQAaMAXSUR0CdT8RYzSCwdX2UKGgGaAloD0MImurJ/KNBYUCUhpRSlGgVTUAGaBZHQJ1TeB+Wnj11fZQoaAZoCWgPQwikMzDysshgQJSGlFKUaBVNQAZoFkdAnVRwVwgkknV9lChoBmgJaA9DCAfOGVFaiWBAlIaUUpRoFU1ABmgWR0CdVPZXdTHbdX2UKGgGaAloD0MIrYVZaGeyYECUhpRSlGgVTUAGaBZHQJ1U9/5Lytp1fZQoaAZoCWgPQwhuUtFY+6xcQJSGlFKUaBVNQAZoFkdAnVilYU34sXV9lChoBmgJaA9DCH/ZPXlYsVHAlIaUUpRoFU3uAWgWR0Cde2LzwtrcdX2UKGgGaAloD0MIGTxM+2bTYUCUhpRSlGgVTUAGaBZHQJ18dWuHN5d1fZQoaAZoCWgPQwhWurvOhpBfQJSGlFKUaBVNQAZoFkdAnX6EFSsKcHV9lChoBmgJaA9DCMeCwqBMzllAlIaUUpRoFU1ABmgWR0CdhMSLqD9PdX2UKGgGaAloD0MIIO9VK5NCYECUhpRSlGgVTUAGaBZHQJ2Hx/iHZbp1fZQoaAZoCWgPQwhhF0UPfLVhQJSGlFKUaBVNQAZoFkdAnYjOCsfaH3V9lChoBmgJaA9DCPCiryDNUl1AlIaUUpRoFU1ABmgWR0CdilZuAI6bdX2UKGgGaAloD0MILskBuxpBYECUhpRSlGgVTUAGaBZHQJ2PEenyd4F1fZQoaAZoCWgPQwhjY15HHPhUwJSGlFKUaBVNGAFoFkdAnZFvikwevXV9lChoBmgJaA9DCIgNFk5SQmBAlIaUUpRoFU1ABmgWR0CdrMrZamoBdX2UKGgGaAloD0MIWYtPATBKXECUhpRSlGgVTUAGaBZHQJ2tHq1PWQR1fZQoaAZoCWgPQwigVPt0PBJgQJSGlFKUaBVNQAZoFkdAna9ijQAuI3V9lChoBmgJaA9DCH+JeOv8XGBAlIaUUpRoFU1ABmgWR0Cdr/z4DcM3dX2UKGgGaAloD0MIO+KQDaQgXkCUhpRSlGgVTUAGaBZHQJ20EIrvsqt1fZQoaAZoCWgPQwithsQ9lrRkQJSGlFKUaBVNQAZoFkdAnbUuuvECNnV9lChoBmgJaA9DCI9srppnt2FAlIaUUpRoFU1ABmgWR0CdtcfcvduYdX2UKGgGaAloD0MI58OzBBlNW0CUhpRSlGgVTUAGaBZHQJ26IAWBSUF1fZQoaAZoCWgPQwjaHyi37S5iQJSGlFKUaBVNQAZoFkdAnhINc8kleHV9lChoBmgJaA9DCOrpI/CHn1xAlIaUUpRoFU1ABmgWR0CeExu+RHPNdX2UKGgGaAloD0MI3eo56X1VX0CUhpRSlGgVTUAGaBZHQJ4VNFH8TBZ1fZQoaAZoCWgPQwjfp6rQQJRfQJSGlFKUaBVNQAZoFkdAnjKFefI0ZXV9lChoBmgJaA9DCLK8qx4wyzPAlIaUUpRoFU1JBGgWR0CeNnjin5zpdX2UKGgGaAloD0MIqRPQRFisYECUhpRSlGgVTUAGaBZHQJ42lIOH3111fZQoaAZoCWgPQwjfqYB7HtlhQJSGlFKUaBVNQAZoFkdAnjgd+w1R+HV9lChoBmgJaA9DCHY25J8Z6lxAlIaUUpRoFU1ABmgWR0CePI7IDHOsdX2UKGgGaAloD0MIVkRN9PlWYUCUhpRSlGgVTUAGaBZHQJ4+7b349HN1fZQoaAZoCWgPQwhAM4gP7BZPwJSGlFKUaBVNFQJoFkdAnkQ7JGOMl3V9lChoBmgJaA9DCIDW/PhLfF5AlIaUUpRoFU1ABmgWR0CeRFnnuAqedX2UKGgGaAloD0MIrMYS1sY2YECUhpRSlGgVTUAGaBZHQJ5EsbxVhkR1fZQoaAZoCWgPQwigNT/+0ulQwJSGlFKUaBVNogFoFkdAnkYak2xY73V9lChoBmgJaA9DCPm/IyrUg2BAlIaUUpRoFU1ABmgWR0CeR/sfaHsUdX2UKGgGaAloD0MIste7P17zYECUhpRSlGgVTUAGaBZHQJ5MM99tuUF1fZQoaAZoCWgPQwgwD5nyoWZhQJSGlFKUaBVNQAZoFkdAnk1GQwK0D3V9lChoBmgJaA9DCEpE+BdBdlxAlIaUUpRoFU1ABmgWR0CeTdqD9OyndX2UKGgGaAloD0MIhIO9iSFlRcCUhpRSlGgVTfECaBZHQJ5li7voePt1fZQoaAZoCWgPQwj1aRX9odZgQJSGlFKUaBVNQAZoFkdAnmfc3++/QHV9lChoBmgJaA9DCCk8aHbdHFPAlIaUUpRoFU12AWgWR0CeaZ1wHZ9NdX2UKGgGaAloD0MIlSu8y0VIWcCUhpRSlGgVS3ZoFkdAnmtkPUaybHV9lChoBmgJaA9DCJV87C7QOGJAlIaUUpRoFU1ABmgWR0Cecn3FDOTrdX2UKGgGaAloD0MIa9WuCWmQYECUhpRSlGgVTUAGaBZHQJ5zbT3IuGt1fZQoaAZoCWgPQwhkAn6NJDBhQJSGlFKUaBVNQAZoFkdAnnU+Ay2x6nV9lChoBmgJaA9DCPgaguMypEXAlIaUUpRoFU34AmgWR0CeeNU47zTXdX2UKGgGaAloD0MIIjXtYprpYkCUhpRSlGgVTUAGaBZHQJ5+FjNIK+l1fZQoaAZoCWgPQwjP9X04SP5gQJSGlFKUaBVNQAZoFkdAnpe3bEgnt3V9lChoBmgJaA9DCHKHTWTm2EjAlIaUUpRoFU0tAmgWR0CemWjOcDr7dX2UKGgGaAloD0MIPpY+dEGpX0CUhpRSlGgVTUAGaBZHQJ6ZpGb1AZ91fZQoaAZoCWgPQwgrE36pn5NgQJSGlFKUaBVNQAZoFkdAnp4qL4vexnV9lChoBmgJaA9DCCDPLt96aGFAlIaUUpRoFU1ABmgWR0CenkIuoP07dX2UKGgGaAloD0MIHZJaKBktZECUhpRSlGgVTUAGaBZHQJ6eigRK6Fx1fZQoaAZoCWgPQwg7inPU0SpYwJSGlFKUaBVLrWgWR0CenoWyTpxFdX2UKGgGaAloD0MIrDsW26RvXkCUhpRSlGgVTUAGaBZHQJ6frLjghr51fZQoaAZoCWgPQwgQPL69a9pCQJSGlFKUaBVNqAVoFkdAnqNzQu27WnV9lChoBmgJaA9DCBKGAUsuwmFAlIaUUpRoFU1ABmgWR0CepbpL26CldX2UKGgGaAloD0MIPrK5ah4AYkCUhpRSlGgVTUAGaBZHQJ6mPcXWOIZ1fZQoaAZoCWgPQwhJ2o0+5qhQwJSGlFKUaBVNdAFoFkdAnqjE8A7xNXV9lChoBmgJaA9DCAXFjzF3B0fAlIaUUpRoFU27AmgWR0CeqyTPjXFtdX2UKGgGaAloD0MI0csoltuoYUCUhpRSlGgVTUAGaBZHQJ6rhsCT2WZ1fZQoaAZoCWgPQwj75ZMVQ5FhQJSGlFKUaBVNQAZoFkdAnq02KVII4XV9lChoBmgJaA9DCEqYaftXMkvAlIaUUpRoFU2qAmgWR0Ce5NYWcjJNdX2UKGgGaAloD0MIY3/ZPXk6ZECUhpRSlGgVTUAGaBZHQJ7mkUZeiSJ1fZQoaAZoCWgPQwj1gHnIFOFiQJSGlFKUaBVNQAZoFkdAnv3pDiOvMnV9lChoBmgJaA9DCP7RN2maB2RAlIaUUpRoFU1ABmgWR0CfA1WY4Qz2dX2UKGgGaAloD0MIUOPe/IajWMCUhpRSlGgVS4FoFkdAnwc2cnVoYnV9lChoBmgJaA9DCNOh0/NuOGJAlIaUUpRoFU1ABmgWR0CfCO7j1f3OdX2UKGgGaAloD0MIPGcLCK2HP8CUhpRSlGgVTc0CaBZHQJ8JUZCOWB11fZQoaAZoCWgPQwggzy7f+olkQJSGlFKUaBVNQAZoFkdAnw/35WRzR3V9lChoBmgJaA9DCLtemiLA10ZAlIaUUpRoFU0rBmgWR0CfFHZU1hsqdX2UKGgGaAloD0MIzH1yFKBLY0CUhpRSlGgVTUAGaBZHQJ8VIyj59E11fZQoaAZoCWgPQwgW26SisSJjQJSGlFKUaBVNQAZoFkdAnxVtsFdLQHV9lChoBmgJaA9DCOj2ksZofVvAlIaUUpRoFUs4aBZHQJ8WxDF6zE91fZQoaAZoCWgPQwhwJNBgU29BQJSGlFKUaBVNhAVoFkdAnxeMjeKsMnV9lChoBmgJaA9DCIKPwYpTmWFAlIaUUpRoFU1ABmgWR0CfGqEF4cFRdX2UKGgGaAloD0MIAimxa/urY0CUhpRSlGgVTUAGaBZHQJ8x/G3nZCh1fZQoaAZoCWgPQwh2qKYka91kQJSGlFKUaBVNQAZoFkdAnzSODrZ8KHV9lChoBmgJaA9DCFOynITSKGRAlIaUUpRoFU1ABmgWR0CfNtsRxtHhdX2UKGgGaAloD0MI6IcRwqMiUMCUhpRSlGgVTUwBaBZHQJ84YWDYh+x1fZQoaAZoCWgPQwgQBTOmYLhhQJSGlFKUaBVNQAZoFkdAnzj5uAI6bXV9lChoBmgJaA9DCAkWhzM/9WJAlIaUUpRoFU1ABmgWR0CfPla8Yht+dX2UKGgGaAloD0MI5CzsaYfdZECUhpRSlGgVTUAGaBZHQJ8/qv9tMwl1fZQoaAZoCWgPQwj3IW+5egBjQJSGlFKUaBVNQAZoFkdAn0CF5GBnSXV9lChoBmgJaA9DCNhhTPp7fUZAlIaUUpRoFU1kBWgWR0CfRKSyt3fRdX2UKGgGaAloD0MIBKvq5fdhY0CUhpRSlGgVTUAGaBZHQJ9JHgwXZXd1fZQoaAZoCWgPQwjeIcUACQxjQJSGlFKUaBVNQAZoFkdAn0sTpLVWj3V9lChoBmgJaA9DCPhwyXGn9Ou/lIaUUpRoFU0LBGgWR0CfYruNxVABdX2UKGgGaAloD0MINbVsrS+TZUCUhpRSlGgVTUAGaBZHQJ9lmMGX5WR1fZQoaAZoCWgPQwjRBfUt80RjQJSGlFKUaBVNQAZoFkdAn2mdcry1/nV9lChoBmgJaA9DCDfGTngJ7lxAlIaUUpRoFU1ABmgWR0CfaoRoh6jWdX2UKGgGaAloD0MIYJLKFHOiT8CUhpRSlGgVTRMCaBZHQJ9ruZof0Vd1fZQoaAZoCWgPQwix+47hMTBgQJSGlFKUaBVNQAZoFkdAn2u9tdiUgXV9lChoBmgJaA9DCCfaVUj57F9AlIaUUpRoFU1ABmgWR0CfbHPAfuCxdX2UKGgGaAloD0MI9ihcj8IMYkCUhpRSlGgVTUAGaBZHQJ90oF8ohIR1fZQoaAZoCWgPQwigppatdaFjQJSGlFKUaBVNQAZoFkdAn3bmQSzw+nV9lChoBmgJaA9DCEn0MorlQWNAlIaUUpRoFU1ABmgWR0CfeFnMdLg5dX2UKGgGaAloD0MIn1voSoQiZECUhpRSlGgVTUAGaBZHQJ9497iQ1aZ1ZS4="
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
- ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
- "_n_updates": 460,
84
  "n_steps": 1024,
85
  "gamma": 0.999,
86
  "gae_lambda": 0.98,
@@ -91,7 +91,7 @@
91
  "n_epochs": 4,
92
  "clip_range": {
93
  ":type:": "<class 'function'>",
94
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
  },
96
  "clip_range_vf": null,
97
  "normalize_advantage": true,
 
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fccb306d560>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccb306d5f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccb306d680>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccb306d710>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fccb306d7a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fccb306d830>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccb306d8c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fccb306d950>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccb306d9e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccb306da70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccb306db00>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fccb3045120>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVYwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsYhZRoColDYAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLGIWUaAqJQ2AAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSxiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsYhZRoKolDGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTnViLg==",
26
  "dtype": "float32",
27
  "_shape": [
28
  24
 
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gASVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsEhZRoColDEAAAgL8AAIC/AACAvwAAgL+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwSFlGgKiUMQAACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLBIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwQBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsEhZRoKolDBAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
39
  "dtype": "float32",
40
  "_shape": [
41
  4
 
46
  "bounded_above": "[ True True True True]",
47
  "_np_random": null
48
  },
49
+ "n_envs": 8,
50
+ "num_timesteps": 1400000,
51
  "_total_timesteps": 3000000,
52
  "_num_timesteps_at_start": 0,
53
  "seed": null,
54
  "action_noise": null,
55
+ "start_time": 1654481587.9805398,
56
  "learning_rate": 0.0003,
57
+ "tensorboard_log": "runs/2vfswazc",
58
  "lr_schedule": {
59
  ":type:": "<class 'function'>",
60
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
  },
62
  "_last_obs": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gASVjQMAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwhLGIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAwAAoK0wPy6St72JppM+gJ+kPaO8Vb8AePm54CYWPVtYCD8AAIA/qSyRPwCApTccVm8/VRVHOQAAAABWQas+WKKsPiEjsD7km7g+lRbHPg/b2z7F8/w+CVAhP8IiZz8AAIA/zYvJPhPvDD0tOXg+jXEMvubVzr5iMiy/SJIhvwAAAAAAAAAAHu2CP4hfBz8gHcS9/f9/PwAAAADmU5w+y/6ePrDRpT58JbE+eF3DPvnb3z5wqgQ/6tEqP7elbj8AAIA/RPSXvRiRKz0355Q+RlS3PO5L/bxQkXM/sLIJvwEAgL8AAAAA3IeOPwAAAACwhgU+AIa5uwAAAABpyLg+/r28PgxlxT6739Q+iQ/qPiwuBD836hk/LN9CPwAAgD8AAIA/RH34PQxsPT0pjWg+Zc02PWzdxb7s/38/AIlCvAEAgL8AAAAAuQiQPwAAADNAV4G8+P9/vwAAAADAyak+me+qPuN7sD73Pbs+3Q3NPszh6D5LoQs/2akyP77Ucz8AAIA/L+MYvfMFD77gOek+M8QEvYy8Vb8AAAAAKClGP///fz8AAAAAKq2NPwAAAAA1sVs/gbfYPwAAgD9BR5Q+rO+VPryCmj7Rt6I+zUWwPpaSxT5t3uc+TaoPP+NxPD8AAIA/5nmcvW4uyjut9Bw+6SLfPXDeVb8AAEE15hwbP+L/nL4AAIA/BXGRPwAAgLIitHA/CeiWvgAAAABSvoM+G4yGPgWBjD4u2pU+C/mjPvCvuD7Qltw+TOsKP4M+OT8AAIA/xRqgPjxsGb3F994+bpmyvD/bEb+YSYC/IN5uvpXAcD8AAIA/2A+OP+BAFD+Ey1I/vfx/PwAAAADtnI4+ijuQPsdHlT5WYZ4+QMusPsvowj4egeI+IjMMP++ROz8AAIA/8GTYPvTp971NTqc+xREvPVXnVL8AAAAAaEsyPlvUOj8AAIA/aHmOP6TUer78vHA//P9/PwAAAAAaDZU+qnmUPpjelz7btp8+C/CsPvmFwD6YieE+w70LP37zRz8AAIA/lHSUYi4="
65
  },
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gASVkAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYi4="
69
  },
70
  "_last_original_obs": null,
71
  "_episode_num": 0,
72
  "use_sde": false,
73
  "sde_sample_freq": -1,
74
+ "_current_progress_remaining": 0.5357866666666666,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gASVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICW05l+JqWsCUhpRSlIwBbJRLN4wBdJRHQJTZv0+TvAp1fZQoaAZoCWgPQwjxoNl1b4diQJSGlFKUaBVNQAZoFkdAlN06WC2+f3V9lChoBmgJaA9DCAKdSZuqsmRAlIaUUpRoFU1ABmgWR0CU31189fTkdX2UKGgGaAloD0MIgZauYBsNYUCUhpRSlGgVTUAGaBZHQJTu1r9ETg51fZQoaAZoCWgPQwi6hhkaz+hiQJSGlFKUaBVNQAZoFkdAlO+BcE/0NHV9lChoBmgJaA9DCA0AVdy47WNAlIaUUpRoFU1ABmgWR0CU8UX5FgDzdX2UKGgGaAloD0MI/g5FgT68YkCUhpRSlGgVTUAGaBZHQJTzY+zMRpV1fZQoaAZoCWgPQwjL2xFOC2NhQJSGlFKUaBVNQAZoFkdAlPRlUyYXwnV9lChoBmgJaA9DCOxLNh5s7VrAlIaUUpRoFUtVaBZHQJT0t/qgRK91fZQoaAZoCWgPQwiE2JlCZ9FiQJSGlFKUaBVNQAZoFkdAlQaxNEgGKXV9lChoBmgJaA9DCBlz1xJyymJAlIaUUpRoFU1ABmgWR0CVCj7q6e5GdX2UKGgGaAloD0MIm+jzUUYtWMCUhpRSlGgVS4FoFkdAlQxO32EkB3V9lChoBmgJaA9DCI3vi0tVmV5AlIaUUpRoFU1ABmgWR0CVDFsBQvYfdX2UKGgGaAloD0MIwwyNJ4L8RECUhpRSlGgVTR8GaBZHQJURX0Dlo111fZQoaAZoCWgPQwgVGR2QhNNjQJSGlFKUaBVNQAZoFkdAlRKRS9/SY3V9lChoBmgJaA9DCG8QrRVtg19AlIaUUpRoFU1ABmgWR0CVFGS+QEIPdX2UKGgGaAloD0MIAoI5evz+YUCUhpRSlGgVTUAGaBZHQJUhNBmf5DZ1fZQoaAZoCWgPQwj3HcNjv09lQJSGlFKUaBVNQAZoFkdAlSGGZNO/L3V9lChoBmgJaA9DCOC6Ykb422VAlIaUUpRoFU1ABmgWR0CVKdXeFcptdX2UKGgGaAloD0MI8ItLVdpKSMCUhpRSlGgVTdsCaBZHQJUtPTspobp1fZQoaAZoCWgPQwhSgCiYMSdEQJSGlFKUaBVNuAVoFkdAlS1Tc6/7BXV9lChoBmgJaA9DCEX11sBWd2RAlIaUUpRoFU1ABmgWR0CVL3okAxSHdX2UKGgGaAloD0MIZi/bTlvkY0CUhpRSlGgVTUAGaBZHQJU+QdtEXtV1fZQoaAZoCWgPQwj+1eO+VZ5lQJSGlFKUaBVNQAZoFkdAlT9//JeVs3V9lChoBmgJaA9DCISc9//xpmJAlIaUUpRoFU1ABmgWR0CVQVq5LAYYdX2UKGgGaAloD0MI+Ki/XmH3XkCUhpRSlGgVTUAGaBZHQJVEhoWYWtV1fZQoaAZoCWgPQwhxy0dS0mViQJSGlFKUaBVNQAZoFkdAlX/fwZwXInV9lChoBmgJaA9DCMl3KXXJK2RAlIaUUpRoFU1ABmgWR0CVg0D3dsSCdX2UKGgGaAloD0MI3smnx7YRYkCUhpRSlGgVTUAGaBZHQJWDV0+1Sfl1fZQoaAZoCWgPQwiemWA4VyBjQJSGlFKUaBVNQAZoFkdAlYWGMOwxFnV9lChoBmgJaA9DCPiMRGgEEmNAlIaUUpRoFU1ABmgWR0CVioNTcZccdX2UKGgGaAloD0MIMC/APrpbY0CUhpRSlGgVTUAGaBZHQJWLtirksBh1fZQoaAZoCWgPQwifyJOka8VfQJSGlFKUaBVNQAZoFkdAlZdDOC5Et3V9lChoBmgJaA9DCGQjEK/r0mJAlIaUUpRoFU1ABmgWR0CVmmSg5BC2dX2UKGgGaAloD0MIPKHXn8SlY0CUhpRSlGgVTUAGaBZHQJWi91wHZ9N1fZQoaAZoCWgPQwjON6J71gUTQJSGlFKUaBVN+ARoFkdAlaNZCF9KEnV9lChoBmgJaA9DCLh1N0/1h2RAlIaUUpRoFU1ABmgWR0CVpm3vx6OYdX2UKGgGaAloD0MI51QyANQtYECUhpRSlGgVTUAGaBZHQJWmhMtbs4V1fZQoaAZoCWgPQwi5bkp5LaRiQJSGlFKUaBVNQAZoFkdAlbef9Hc1wnV9lChoBmgJaA9DCDSGOUEbNWFAlIaUUpRoFU1ABmgWR0CVuN42jwhGdX2UKGgGaAloD0MIrweT4uNzScCUhpRSlGgVTRkCaBZHQJW47bRF7Up1fZQoaAZoCWgPQwiTNlX3yHpmQJSGlFKUaBVNQAZoFkdAlbqxh+fAbnV9lChoBmgJaA9DCHnMQGV8KmRAlIaUUpRoFU1ABmgWR0CVvc3yqdYodX2UKGgGaAloD0MI5E1+i84kYUCUhpRSlGgVTUAGaBZHQJXQMvK2a2F1fZQoaAZoCWgPQwj4FtaNdwpiQJSGlFKUaBVNQAZoFkdAldCeumrKeXV9lChoBmgJaA9DCAK8BRIU9VjAlIaUUpRoFUtWaBZHQJXRmwxFiKB1fZQoaAZoCWgPQwjn4m97giRkQJSGlFKUaBVNQAZoFkdAldPGBz3h43V9lChoBmgJaA9DCGGNs+kIaFTAlIaUUpRoFU05AWgWR0CV1sdTYNAkdX2UKGgGaAloD0MIZFdaRur1WMCUhpRSlGgVS31oFkdAldjERjBl+XV9lChoBmgJaA9DCJhO6zaokVnAlIaUUpRoFUtXaBZHQJXaKvV3EAJ1fZQoaAZoCWgPQwgwuycPCzdjQJSGlFKUaBVNQAZoFkdAldsrnX/YJ3V9lChoBmgJaA9DCOSh725lw11AlIaUUpRoFU1ABmgWR0CV5hbMottidX2UKGgGaAloD0MIqoHmc27zYkCUhpRSlGgVTUAGaBZHQJXmJxcVxjt1fZQoaAZoCWgPQwg5Yi0+hZxkQJSGlFKUaBVNQAZoFkdAlefz4Hoou3V9lChoBmgJaA9DCNBjlGfeOmVAlIaUUpRoFU1ABmgWR0CV6xb2USqVdX2UKGgGaAloD0MILuOmBpp9RsCUhpRSlGgVTRQCaBZHQJXtbcQAdXF1fZQoaAZoCWgPQwguq7AZ4MRTwJSGlFKUaBVL6GgWR0CV7tUx20RfdX2UKGgGaAloD0MIEeSghJkTZECUhpRSlGgVTUAGaBZHQJX0He3x4IN1fZQoaAZoCWgPQwgRkC+hgrVdQJSGlFKUaBVNQAZoFkdAlgDcc2itaXV9lChoBmgJaA9DCD9XW7G/0mBAlIaUUpRoFU1ABmgWR0CWBzckdFOPdX2UKGgGaAloD0MIFr1TAfcGZECUhpRSlGgVTUAGaBZHQJYJZFNL1291fZQoaAZoCWgPQwhi1ouhnLRhQJSGlFKUaBVNQAZoFkdAlgl0J4SpSHV9lChoBmgJaA9DCHk+A+rNwWFAlIaUUpRoFU1ABmgWR0CWC0Ex7AtWdX2UKGgGaAloD0MIyVnY0w4HTcCUhpRSlGgVTcIBaBZHQJYaWpKjBVN1fZQoaAZoCWgPQwhsI57sZpZhQJSGlFKUaBVNQAZoFkdAlhpsunMt9XV9lChoBmgJaA9DCGh23VuRTmZAlIaUUpRoFU1ABmgWR0CWG9c8TzundX2UKGgGaAloD0MIK98zEqFNV8CUhpRSlGgVS79oFkdAlh18wQDmsHV9lChoBmgJaA9DCBLcSNmiuGZAlIaUUpRoFU1ABmgWR0CWIT+zMRpUdX2UKGgGaAloD0MIjPSidr8NZUCUhpRSlGgVTUAGaBZHQJYkTlKbrkd1fZQoaAZoCWgPQwiTxmgdVRNjQJSGlFKUaBVNQAZoFkdAljRl4cFQmHV9lChoBmgJaA9DCPvo1JXPTmVAlIaUUpRoFU1ABmgWR0CWNotga3qidX2UKGgGaAloD0MIA5SGGoU4ZkCUhpRSlGgVTUAGaBZHQJY4WpfhMrV1fZQoaAZoCWgPQwguck9X95xhQJSGlFKUaBVNQAZoFkdAlj29ycTakHV9lChoBmgJaA9DCDwSL09nl2JAlIaUUpRoFU1ABmgWR0CWPyqRlpXZdX2UKGgGaAloD0MIE0n0MorjY0CUhpRSlGgVTUAGaBZHQJZA2+AVfu11fZQoaAZoCWgPQwguq7AZ4J5ZwJSGlFKUaBVLQmgWR0CWQd/FBIFvdX2UKGgGaAloD0MIUp0OZD2cZUCUhpRSlGgVTUAGaBZHQJZOPqFAVwh1fZQoaAZoCWgPQwiEnPf/8WxiQJSGlFKUaBVNQAZoFkdAllE/KuB+WnV9lChoBmgJaA9DCGHj+nd9XjLAlIaUUpRoFU3KA2gWR0CWUZlMRHwxdX2UKGgGaAloD0MIpKgz95BJWMCUhpRSlGgVS01oFkdAllLRJul41XV9lChoBmgJaA9DCHKMZI/QamZAlIaUUpRoFU1ABmgWR0CWV5KQ7tAtdX2UKGgGaAloD0MIWOIBZdNUZECUhpRSlGgVTUAGaBZHQJZZwToMa0h1fZQoaAZoCWgPQwibj2tDRe1iQJSGlFKUaBVNQAZoFkdAlmru+RHPNXV9lChoBmgJaA9DCBZRE30+omNAlIaUUpRoFU1ABmgWR0CWbTFd9lVcdX2UKGgGaAloD0MIVyWRfZAaWMCUhpRSlGgVS2RoFkdAlm+pwfhddHV9lChoBmgJaA9DCF+bjZWYoWRAlIaUUpRoFU1ABmgWR0CWcV0YTCcgdX2UKGgGaAloD0MIhlW8kXmANECUhpRSlGgVTbMEaBZHQJZym3/givB1fZQoaAZoCWgPQwh0t+ulKfIsQJSGlFKUaBVN8wVoFkdAlnMq55JK8XV9lChoBmgJaA9DCPLs8q2PdmVAlIaUUpRoFU1ABmgWR0CWd11uR9w4dX2UKGgGaAloD0MIRBZp4h1BZUCUhpRSlGgVTUAGaBZHQJaHd04iosJ1fZQoaAZoCWgPQwhsIchBCVNkQJSGlFKUaBVNQAZoFkdAlomw3gk1M3V9lChoBmgJaA9DCDMa+bziMS9AlIaUUpRoFU3ZA2gWR0CWjJ7KJVKgdX2UKGgGaAloD0MIIJp5ck0BZECUhpRSlGgVTUAGaBZHQJaQ6ApazNV1fZQoaAZoCWgPQwhTexFtx3hHQJSGlFKUaBVNPAVoFkdAlpGxP9DQaHV9lChoBmgJaA9DCFcFajH4q2RAlIaUUpRoFU1ABmgWR0CWk+jiGWUsdX2UKGgGaAloD0MIjdMQVXiPYkCUhpRSlGgVTUAGaBZHQJaVAImgJ1J1fZQoaAZoCWgPQwiHbYsyG0wvwJSGlFKUaBVNmwNoFkdAlqIZzcRDkXV9lChoBmgJaA9DCINPc/IiU2RAlIaUUpRoFU1ABmgWR0CWpFMc6vJSdX2UKGgGaAloD0MIdlH0wEeYY0CUhpRSlGgVTUAGaBZHQJaqyIacZtN1fZQoaAZoCWgPQwj4UQ37PUkrQJSGlFKUaBVNWAVoFkdAlqw4U34sVnVlLg=="
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
+ "_n_updates": 680,
84
  "n_steps": 1024,
85
  "gamma": 0.999,
86
  "gae_lambda": 0.98,
 
91
  "n_epochs": 4,
92
  "clip_range": {
93
  ":type:": "<class 'function'>",
94
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
  },
96
  "clip_range_vf": null,
97
  "normalize_advantage": true,
ppo-BipedalWalker-v3/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9728cb181c2d39c9231c444ffe557de54c58f1f6764c51356ca1afa757e9778
3
  size 101783
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a02c3fde74637e006bafed6de6f38dd403c6680ed7d14ff4c0a7080108b8f40
3
  size 101783
ppo-BipedalWalker-v3/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e6c0361ca81f723cb33428ea80eb8f62f3a6e9ae7076acdcc689100840c5d63d
3
  size 51710
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:425946f7b8bec3198b231ddb3408e7f3adf8f1ef1ad6da8b0006f3170543d6a6
3
  size 51710
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ecde60b72aadc7c237901af17c4296088308e5a58b3e42db4623417f2914b73
3
- size 472337
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feeeffda5ab9cfc92ab8ae77414bb60cdf892048e4e41eecd5eaebee941b357a
3
+ size 455697
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 233.9650018400835, "std_reward": 35.83973469830977, "is_deterministic": true, "n_eval_episodes": 200, "eval_datetime": "2022-05-20T03:12:56.978294"}
 
1
+ {"mean_reward": 185.82359891500005, "std_reward": 92.03967393286513, "is_deterministic": true, "n_eval_episodes": 200, "eval_datetime": "2022-06-06T03:15:54.393975"}