File size: 2,002 Bytes
8fae34a d0f8c92 8fae34a d0f8c92 8fae34a a006e7d 8fae34a d0f8c92 a006e7d 8fae34a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: XLNet-Reddit-Toxic-Comment-Classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLNet-Reddit-Toxic-Comment-Classification
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2248
- Rmse: 0.2928
- Accuracy: 0.9143
- Precision: 0.9299
- Recall: 0.9143
- F1: 0.9220
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rmse | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:------:|
| 0.3656 | 1.0 | 1073 | 0.2248 | 0.2928 | 0.9143 | 0.9299 | 0.9143 | 0.9220 |
| 0.2432 | 2.0 | 2146 | 0.3105 | 0.2912 | 0.9152 | 0.9158 | 0.9328 | 0.9242 |
| 0.1649 | 3.0 | 3219 | 0.3818 | 0.2696 | 0.9273 | 0.9176 | 0.9546 | 0.9357 |
| 0.1075 | 4.0 | 4292 | 0.4398 | 0.2798 | 0.9217 | 0.9049 | 0.9597 | 0.9315 |
| 0.0788 | 5.0 | 5365 | 0.4655 | 0.2847 | 0.9189 | 0.9110 | 0.9462 | 0.9283 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
|