--- license: mit base_model: xlnet-base-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: XLNet-Reddit-Toxic-Comment-Classification results: [] --- # XLNet-Reddit-Toxic-Comment-Classification This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2248 - Rmse: 0.2928 - Accuracy: 0.9143 - Precision: 0.9299 - Recall: 0.9143 - F1: 0.9220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:------:| | 0.3656 | 1.0 | 1073 | 0.2248 | 0.2928 | 0.9143 | 0.9299 | 0.9143 | 0.9220 | | 0.2432 | 2.0 | 2146 | 0.3105 | 0.2912 | 0.9152 | 0.9158 | 0.9328 | 0.9242 | | 0.1649 | 3.0 | 3219 | 0.3818 | 0.2696 | 0.9273 | 0.9176 | 0.9546 | 0.9357 | | 0.1075 | 4.0 | 4292 | 0.4398 | 0.2798 | 0.9217 | 0.9049 | 0.9597 | 0.9315 | | 0.0788 | 5.0 | 5365 | 0.4655 | 0.2847 | 0.9189 | 0.9110 | 0.9462 | 0.9283 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1