--- license: mit base_model: xlnet-base-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: XLNet-Reddit-Toxic-Comment-Classification results: [] --- # XLNet-Reddit-Toxic-Comment-Classification This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2964 - Rmse: 0.2828 - Accuracy: 0.92 - Precision: 0.9236 - Recall: 0.9329 - F1: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:------:| | 0.3798 | 1.0 | 1075 | 0.2964 | 0.2828 | 0.92 | 0.9236 | 0.9329 | 0.9282 | | 0.2507 | 2.0 | 2150 | 0.3791 | 0.2973 | 0.9116 | 0.8824 | 0.9698 | 0.9241 | | 0.1734 | 3.0 | 3225 | 0.3779 | 0.3080 | 0.9051 | 0.8847 | 0.9530 | 0.9176 | | 0.1157 | 4.0 | 4300 | 0.4796 | 0.2861 | 0.9181 | 0.9456 | 0.9044 | 0.9245 | | 0.0762 | 5.0 | 5375 | 0.4729 | 0.2762 | 0.9237 | 0.9341 | 0.9279 | 0.9310 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1