File size: 1,940 Bytes
d1bc478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: mit
base_model: vinai/bartpho-syllable
tags:
- vietnamese-administrative-map-name-normalization-0-0-1
- generated_from_trainer
metrics:
- sacrebleu
- wer
model-index:
- name: vietnamese-administrative-map-name-normalization-0.0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vietnamese-administrative-map-name-normalization-0.0.1

This model is a fine-tuned version of [vinai/bartpho-syllable](https://huggingface.co/vinai/bartpho-syllable) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0109
- Model Preparation Time: 0.006
- Sacrebleu: 98.1696
- Cer: 0.0026
- Wer: 0.0085

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Model Preparation Time | Sacrebleu | Cer    | Wer    |
|:-------------:|:------:|:----:|:---------------:|:----------------------:|:---------:|:------:|:------:|
| 0.2144        | 2.0877 | 500  | 0.0313          | 0.006                  | 95.4947   | 0.0075 | 0.0250 |
| 0.0539        | 4.1754 | 1000 | 0.0130          | 0.006                  | 98.1454   | 0.0032 | 0.0101 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1