--- license: mit base_model: VietAI/vit5-large-vietnews-summarization tags: - generated_from_trainer metrics: - rouge model-index: - name: finetuned-news_summarization_vi results: [] --- [Visualize in Weights & Biases](https://wandb.ai/minhquy16/huggingface/runs/4usld66u) # finetuned-news_summarization_vi This model is a fine-tuned version of [VietAI/vit5-large-vietnews-summarization](https://huggingface.co/VietAI/vit5-large-vietnews-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2271 - Rouge1: 0.253 - Rouge2: 0.1919 - Rougel: 0.2233 - Rougelsum: 0.2233 - Gen Len: 18.496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.2561 | 1.0 | 65361 | 0.2342 | 0.248 | 0.1883 | 0.2192 | 0.2192 | 18.274 | | 0.1831 | 2.0 | 130722 | 0.2271 | 0.253 | 0.1919 | 0.2233 | 0.2233 | 18.496 | ### Framework versions - Transformers 4.43.1 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1