--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 트라택 마사지건 액티브건 팟 휴대용 초소형 김계란 근육 무선마사지 코발트블루&차콜 주식회사 나음케어 - text: 접이식 도수 치료 추나 테이블 경락 안마 피부샵 베드 미용 침대 마사지 관리 보라색 70cm 침대+침공베개 레비하이 - text: 케잔 괄사 마사지 승모근 어깨 림프순환 괄사 세라믹괄사 1. 옵션1 강한자극 케잔아일랜드 - text: 접이식 마사지 침대 피부관리 한의원 안마 미용베드 11.70cm 와이드 2단 그레이 서진홀딩스 - text: 등 허리 경추 다기능 전신 목 어깨 전기 마사지 쿠션 허리안마기 A_EU 파밀리아 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.8100799016594961 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.0 | | | 6.0 | | | 0.0 | | | 4.0 | | | 3.0 | | | 1.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.8101 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh17") # Run inference preds = model("등 허리 경추 다기능 전신 목 어깨 전기 마사지 쿠션 허리안마기 A_EU 파밀리아") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 11.3370 | 23 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 20 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 6.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0233 | 1 | 0.4557 | - | | 1.1628 | 50 | 0.2241 | - | | 2.3256 | 100 | 0.0604 | - | | 3.4884 | 150 | 0.0172 | - | | 4.6512 | 200 | 0.0031 | - | | 5.8140 | 250 | 0.0009 | - | | 6.9767 | 300 | 0.004 | - | | 8.1395 | 350 | 0.0001 | - | | 9.3023 | 400 | 0.0 | - | | 10.4651 | 450 | 0.0 | - | | 11.6279 | 500 | 0.0 | - | | 12.7907 | 550 | 0.0 | - | | 13.9535 | 600 | 0.0 | - | | 15.1163 | 650 | 0.0 | - | | 16.2791 | 700 | 0.0 | - | | 17.4419 | 750 | 0.0 | - | | 18.6047 | 800 | 0.0 | - | | 19.7674 | 850 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```