--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 테팔 매직핸즈 인덕션 블랙스톤 후라이팬 2종(24+28) 05-매트그레이3종(팬24+웍22+손잡이) (주)티피상사 - text: 놋담 방짜유기 유기 티스푼 10.유기 체리 사각 티스푼 (주)죽전도예 - text: 위케어 친환경 산화생분해 크린위생장갑 200매 천연일회용 비닐장갑 에이비컴퍼니 - text: 대형 주방 베이킹 반죽 도마 실리콘 향균 80x70 눈금자 09. 모란그린 플러스 도톰 50x70 사은품 경식시대 - text: 오리스타 우드 하비 41 우드 큐브1호1구 세트 주식회사 두현인터내셔널 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.5785953728183967 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 16 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | | | 15.0 | | | 11.0 | | | 8.0 | | | 3.0 | | | 5.0 | | | 7.0 | | | 13.0 | | | 4.0 | | | 12.0 | | | 9.0 | | | 14.0 | | | 0.0 | | | 6.0 | | | 10.0 | | | 2.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.5786 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh25") # Run inference preds = model("놋담 방짜유기 유기 티스푼 10.유기 체리 사각 티스푼 (주)죽전도예") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.5687 | 22 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | | 13.0 | 50 | | 14.0 | 50 | | 15.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.008 | 1 | 0.4166 | - | | 0.4 | 50 | 0.3979 | - | | 0.8 | 100 | 0.2722 | - | | 1.2 | 150 | 0.1862 | - | | 1.6 | 200 | 0.1144 | - | | 2.0 | 250 | 0.0921 | - | | 2.4 | 300 | 0.0586 | - | | 2.8 | 350 | 0.0429 | - | | 3.2 | 400 | 0.0189 | - | | 3.6 | 450 | 0.0096 | - | | 4.0 | 500 | 0.0151 | - | | 4.4 | 550 | 0.0146 | - | | 4.8 | 600 | 0.0154 | - | | 5.2 | 650 | 0.012 | - | | 5.6 | 700 | 0.0145 | - | | 6.0 | 750 | 0.0037 | - | | 6.4 | 800 | 0.0064 | - | | 6.8 | 850 | 0.001 | - | | 7.2 | 900 | 0.0007 | - | | 7.6 | 950 | 0.0004 | - | | 8.0 | 1000 | 0.0002 | - | | 8.4 | 1050 | 0.0002 | - | | 8.8 | 1100 | 0.0002 | - | | 9.2 | 1150 | 0.0002 | - | | 9.6 | 1200 | 0.0002 | - | | 10.0 | 1250 | 0.0002 | - | | 10.4 | 1300 | 0.0001 | - | | 10.8 | 1350 | 0.0001 | - | | 11.2 | 1400 | 0.0001 | - | | 11.6 | 1450 | 0.0001 | - | | 12.0 | 1500 | 0.0001 | - | | 12.4 | 1550 | 0.0001 | - | | 12.8 | 1600 | 0.0001 | - | | 13.2 | 1650 | 0.0001 | - | | 13.6 | 1700 | 0.0001 | - | | 14.0 | 1750 | 0.0001 | - | | 14.4 | 1800 | 0.0001 | - | | 14.8 | 1850 | 0.0001 | - | | 15.2 | 1900 | 0.0001 | - | | 15.6 | 1950 | 0.0001 | - | | 16.0 | 2000 | 0.0001 | - | | 16.4 | 2050 | 0.0001 | - | | 16.8 | 2100 | 0.0001 | - | | 17.2 | 2150 | 0.0001 | - | | 17.6 | 2200 | 0.0001 | - | | 18.0 | 2250 | 0.0001 | - | | 18.4 | 2300 | 0.0001 | - | | 18.8 | 2350 | 0.0001 | - | | 19.2 | 2400 | 0.0001 | - | | 19.6 | 2450 | 0.0001 | - | | 20.0 | 2500 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```