File size: 8,611 Bytes
2c08e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: SD 바이오 에스디 코드프리 당뇨검사지 4박스 200매 (유효기간 2025년 03월) 코드프리 200매+알콜솜 100매 엠에스메디칼
- text: 아큐첵 소프트클릭스 채혈기+채혈침 25개 액티브 퍼포마 인스턴트 가이드 란셋 채혈바늘 주식회사 더에스지엠
- text: 녹십자 혈당시험지 당뇨 시험지 그린닥터 50매 시험지100매+체혈침100개 자재스토어
- text: HL 지닥터 혈당시험지 100매 /당뇨측정 검사지 스트립 1_지닥터 혈당시험지 100매+알콜솜100매 헬스라e프
- text: 비디 울트라파인 인슐린 주사기 1박스 100개 328821[31G 8mm 0.5ml]BD 펜니들 주사바늘 울트라파인2 BD 인슐린 31G
6mm 0.5ml 1박스(324901) 더메디칼샵
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9786747905559787
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 | <ul><li>'프리스타일 리브레 무채혈 연속혈당측정기(24년1월)얼라이브패치1매 거래명세서 광명헬스케어'</li><li>'SD 코드프리 혈당측정기(측정기+채혈기+침10매+파우치)P 스토어알파'</li><li>'올메디쿠스 글루코닥터 탑 혈당계 AGM-4100+파우치+채혈기+채혈침 10개 엠에스메디칼'</li></ul> |
| 2.0 | <ul><li>'에스디 SD 코드프리 측정지|검사지|시험지 100매(25년 2월) 더메디칼샵'</li><li>'바로잰 당뇨검사 혈당시험지 100매(50매x2팩) 사용기한 25년 3월 MinSellAmount 유니프라이스'</li><li>'옵티엄 프리스타일 케톤시험지1박스10매 검사지 혈중 (24년 8월) 메디트리'</li></ul> |
| 0.0 | <ul><li>'비디 울트라파인 인슐린 주사기 1박스 100입 324901 [31G 6mm 0.5ml] BD 펜니들 주사바늘 울트라파인2 BD 인슐린 31G 8mm 3/10ml(0.5단위) 1박스(320440) 더메디칼샵'</li><li>'BD 비디 울트라파인 인슐린 주사기 시린지 31G 6mm 1ml 324903 100입 주식회사 더에스지엠'</li><li>'정림 멸균 일회용 주사기 3cc 23g 25mm 100개입 멸균주사기 10cc 18G 38mm(100ea/pck) (주)케이디상사'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9787 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh7")
# Run inference
preds = model("녹십자 혈당시험지 당뇨 시험지 그린닥터 50매 시험지100매+체혈침100개 자재스토어")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 9.62 | 21 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0417 | 1 | 0.4565 | - |
| 2.0833 | 50 | 0.1836 | - |
| 4.1667 | 100 | 0.1645 | - |
| 6.25 | 150 | 0.0004 | - |
| 8.3333 | 200 | 0.0001 | - |
| 10.4167 | 250 | 0.0001 | - |
| 12.5 | 300 | 0.0 | - |
| 14.5833 | 350 | 0.0 | - |
| 16.6667 | 400 | 0.0 | - |
| 18.75 | 450 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |