minnehwg commited on
Commit
de72c49
1 Parent(s): 52e2b4b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: finetune-newwiki-summarization-ver2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # finetune-newwiki-summarization-ver2
16
+
17
+ This model is a fine-tuned version of [minnehwg/finetune-newwiki-summarization-ver1](https://huggingface.co/minnehwg/finetune-newwiki-summarization-ver1) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4697
20
+ - Rouge1: 48.1659
21
+ - Rouge2: 25.1491
22
+ - Rougel: 34.7794
23
+ - Rougelsum: 37.0893
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 1e-06
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 7
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
55
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
56
+ | 0.4912 | 1.0 | 990 | 0.4701 | 48.1754 | 25.0221 | 34.7613 | 37.0734 |
57
+ | 0.4748 | 2.0 | 1980 | 0.4694 | 48.3629 | 25.3649 | 35.0239 | 37.3084 |
58
+ | 0.4755 | 3.0 | 2970 | 0.4695 | 48.2770 | 25.1907 | 34.8456 | 37.1930 |
59
+ | 0.4703 | 4.0 | 3960 | 0.4696 | 48.1801 | 25.1769 | 34.8004 | 37.0817 |
60
+ | 0.468 | 5.0 | 4950 | 0.4697 | 48.1659 | 25.1491 | 34.7794 | 37.0893 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.17.0
66
+ - Pytorch 2.1.2
67
+ - Datasets 2.18.0
68
+ - Tokenizers 0.15.2