minoosh commited on
Commit
62c8eea
·
verified ·
1 Parent(s): 760a29b

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,72 +1,37 @@
1
  ---
2
- library_name: transformers
3
  tags:
4
- - generated_from_trainer
5
- metrics:
6
- - accuracy
7
- - f1
8
- - precision
9
- - recall
10
- model-index:
11
- - name: bert-clf-biencoder-cross_entropy
12
- results: []
13
  ---
14
 
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
 
18
- # bert-clf-biencoder-cross_entropy
19
 
20
- This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
21
- It achieves the following results on the evaluation set:
22
- - Loss: 0.9480
23
- - Accuracy: 0.6634
24
- - F1: 0.6648
25
- - Precision: 0.6687
26
- - Recall: 0.6634
27
 
28
- ## Model description
29
 
30
- More information needed
 
 
31
 
32
- ## Intended uses & limitations
 
33
 
34
- More information needed
 
35
 
36
- ## Training and evaluation data
37
-
38
- More information needed
39
-
40
- ## Training procedure
41
-
42
- ### Training hyperparameters
43
-
44
- The following hyperparameters were used during training:
45
- - learning_rate: 2e-05
46
- - train_batch_size: 32
47
- - eval_batch_size: 32
48
- - seed: 42
49
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
- - lr_scheduler_type: linear
51
- - lr_scheduler_warmup_steps: 100
52
- - num_epochs: 7
53
-
54
- ### Training results
55
-
56
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
- | 1.1883 | 1.0 | 78 | 1.0551 | 0.6019 | 0.5890 | 0.5964 | 0.6019 |
59
- | 0.859 | 2.0 | 156 | 0.8377 | 0.6311 | 0.6231 | 0.6472 | 0.6311 |
60
- | 0.6539 | 3.0 | 234 | 0.7989 | 0.6634 | 0.6651 | 0.6677 | 0.6634 |
61
- | 0.5242 | 4.0 | 312 | 0.8181 | 0.6731 | 0.6717 | 0.6823 | 0.6731 |
62
- | 0.3728 | 5.0 | 390 | 0.8442 | 0.6861 | 0.6855 | 0.6889 | 0.6861 |
63
- | 0.2566 | 6.0 | 468 | 0.9040 | 0.6764 | 0.6769 | 0.6779 | 0.6764 |
64
- | 0.1959 | 7.0 | 546 | 0.9480 | 0.6634 | 0.6648 | 0.6687 | 0.6634 |
65
-
66
-
67
- ### Framework versions
68
-
69
- - Transformers 4.45.1
70
- - Pytorch 2.4.0
71
- - Datasets 3.0.1
72
- - Tokenizers 0.20.0
 
1
  ---
2
+ language: en
3
  tags:
4
+ - bert
5
+ - classification
6
+ - pytorch
7
+ pipeline_tag: text-classification
 
 
 
 
 
8
  ---
9
 
10
+ # BiEncoder Classification Model
 
11
 
12
+ This model is a BiEncoder architecture based on BERT for text pair classification.
13
 
14
+ ## Model Details
15
+ - Base Model: bert-base-uncased
16
+ - Architecture: BiEncoder with BERT base
17
+ - Number of classes: 4
 
 
 
18
 
19
+ ## Usage
20
 
21
+ ```python
22
+ from transformers import AutoTokenizer
23
+ import torch
24
 
25
+ # Load tokenizer
26
+ tokenizer = AutoTokenizer.from_pretrained("minoosh/bert-clf-biencoder-cross_entropy")
27
 
28
+ # Load model weights
29
+ state_dict = torch.load("pytorch_model.bin")
30
 
31
+ # Initialize model (you'll need the BiEncoderModel class)
32
+ model = BiEncoderModel(
33
+ base_model=AutoModel.from_pretrained("bert-base-uncased"),
34
+ num_classes=4
35
+ )
36
+ model.load_state_dict(state_dict)
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"return_dict": true, "output_hidden_states": false, "output_attentions": false, "torchscript": false, "torch_dtype": null, "use_bfloat16": false, "tf_legacy_loss": false, "pruned_heads": {}, "tie_word_embeddings": true, "chunk_size_feed_forward": 0, "is_encoder_decoder": false, "is_decoder": false, "cross_attention_hidden_size": null, "add_cross_attention": false, "tie_encoder_decoder": false, "max_length": 20, "min_length": 0, "do_sample": false, "early_stopping": false, "num_beams": 1, "num_beam_groups": 1, "diversity_penalty": 0.0, "temperature": 1.0, "top_k": 50, "top_p": 1.0, "typical_p": 1.0, "repetition_penalty": 1.0, "length_penalty": 1.0, "no_repeat_ngram_size": 0, "encoder_no_repeat_ngram_size": 0, "bad_words_ids": null, "num_return_sequences": 1, "output_scores": false, "return_dict_in_generate": false, "forced_bos_token_id": null, "forced_eos_token_id": null, "remove_invalid_values": false, "exponential_decay_length_penalty": null, "suppress_tokens": null, "begin_suppress_tokens": null, "architectures": ["BertModel"], "finetuning_task": null, "id2label": {"0": "LABEL_0", "1": "LABEL_1"}, "label2id": {"LABEL_0": 0, "LABEL_1": 1}, "tokenizer_class": null, "prefix": null, "bos_token_id": null, "pad_token_id": 0, "eos_token_id": null, "sep_token_id": null, "decoder_start_token_id": null, "task_specific_params": null, "problem_type": null, "_name_or_path": "bert-base-uncased", "transformers_version": "4.45.1", "gradient_checkpointing": false, "model_type": "bert", "vocab_size": 30522, "hidden_size": 768, "num_hidden_layers": 12, "num_attention_heads": 12, "hidden_act": "gelu", "intermediate_size": 3072, "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "position_embedding_type": "absolute", "use_cache": true, "classifier_dropout": null}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:095580febcab6e4e715a3384e985951a58280c985a8949451129b8675eae2c36
3
+ size 438038894
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff